

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

OPERATIONAL ANALYSIS Basic Course

Štefan Berežný

Technical University in Košice, Slovak Republic Faculty of Electrical Engineering and Informatics

Summer Semester -2024/2025

Contents

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

1 Transportation problem

- Formulation of the problem
- Simplex table for TP
- Starting methods
- Unbalanced TP
- Degenerate solution of TP

Assignment Problem• Hungarian method

Formulation of the transportation problem

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

•
$$m$$
 suppliers (D_1, D_2, \ldots, D_m) ,

- n customers $(O_1, O_2, \ldots, O_n),$
- capacity of suppliers (a_1, a_2, \ldots, a_m) ,
- customer requirements (b_1, b_2, \ldots, b_n) ,
- c_{ij} the cost of transporting a unit of goods from *i*-th supliers to the *j*-th customer,
- x_{ij} the number of units of goods transported from *i*-th supliers to the *j*-th customer.

• The goal of solving the traffic problem is to establish such a distribution plan (i.e. x_{ij}) that meets the requirements while maintaining capacities with the lowest possible costs.

Transportation problem Standard form of TP

(1)

Operational				
Analysis				
Štefan Berežný	m n			
Transportation problem	$\sum_{i=1} \sum_{j=1} c_{ij} x_{ij}$	\rightarrow	mi	n
Formulation of the problem	$\sum_{i=1}^{n} x_{iii}$	=	a_i	pre $i = 1, 2, .$
Simplex table for TP	$\sum_{j=1}^{\infty} v_j$		ω_l	p== 0 = 1, _, .
Starting methods	m		,	. 1.0
Unbalanced TP	$\sum_{i=1}^{x_{ij}} x_{ij}$	=	o_j	pre $j = 1, 2, .$
Degenerate solution of TP		\geq	0	pre $i = 1, 2,$
Assignment Problem				pre $j = 1, 2, .$
Hungarian method				
Summary				

Transportation problem Balanced TP

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

Definition: (Balanced TP)

If for a transportation problem (1) applies $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$, the given transportation problem is called balanced. Otherwise, we call it unbalanced.

Theorem:

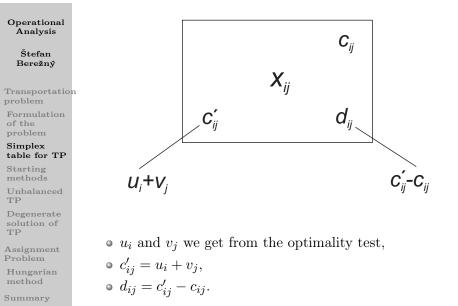
The basic feasible solution of the balanced transportation problem with m suppliers and n customers contains at most m + n - 1 non-zero values of x_{ij} .

• Every transportation problem can be solved by the simplex method, but it contains too many variables. We write it in a special simplex table intended for TP.

Simplex Table for TP

	O_1		O_n	
D_1	x_{11}		x_{1n}	
÷	:		:	
D_m	x_{m1}		x_{mn}	
b _j	b_1		b_n	
	u_1 \vdots D_m u_m	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	v_1 v_n D_1 x_{11} \dots x_{1n} u_1 c'_{11} d_{11} c'_{1n} d_{1n} \vdots \vdots \vdots \vdots D_m x_{m1} \dots x_{mn} u_m c'_{m1} d_{m1}

Simplex Table for TP



Procedure for TP

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

 We write the transportation problem in the modifying simplex table.

Transportation problem Procedure for TP

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

- We write the transportation problem in the modifying simplex table.
- 2 Using one of the starting methods, we can find some basic feasible solution, the so-called starting the task solution.

Transportation problem Procedure for TP

Operational Analysis

Štefan Berežný

- Transportation problem
- Formulation of the problem
- Simplex table for TP
- Starting methods
- Unbalanced TP
- Degenerate solution of TP
- Assignment Problem
- Hungarian method
- Summary

- We write the transportation problem in the modifying simplex table.
- 2 Using one of the starting methods, we can find some basic feasible solution, the so-called starting the task solution.
- 3 We will test the feasible solution that we found using one of the starting methods or by pivoting to see if it is optimal.
 - if the solution is optimal \Rightarrow we will finish,
 - if not optimal ⇒ we pivot the table and do the optimality test again, ⇒ we continue with step 3.

Transportation problem Example of TP – Part 1

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

The STAVIVA company has an order for bricks for three construction sites S1, S2, S3. The requirements of construction sites are for 600, 400 and 300 pallets of bricks respectively. STAVIVA has 500, 300 and 500 pallets of bricks available in its warehouses V1, V2, V3. The costs of transporting one pallet from the relevant large warehouse to a specific construction site are shown in the following table.

	S1	S2	S3
V1	5	10	8
V2	15	4	11
V3	9	7	6

How should STAVIVA company supply construction sites to keep delivery costs to a minimum? (Write in the modified simplex table.)

Example of TP – Part 1 (Solution)

Operational Analysis					
Štefan Berežný		S_1	S_2	S_3	a_i
Transportation problem Formulation of the	V_1	5	10	8	500
problem Simplex table for TP Starting	V_2	15	4	11	300
methods Unbalanced TP Degenerate	V_3	9	7	6	500
solution of TP Assignment Problem	b_j	600	400	300	1300
Hungarian method					

Initial methods

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

The starting methods are used to find some (initial) basic feasible solution of the transportation problem (this solution may not be optimal).

Methods:

- the Northwest Corner Method,
- the Index Method,
- the Vogel's Approximation Method,
- the Russell's Method,
- the row (column) minima method,
- etc.

The Northwest Corner Method

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

Among the basic variables, the variable in the upper left corner (NW) cell is selected and we assign its value x_{ij} = min{a_i, b_j}.

The Northwest Corner Method

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

- Among the basic variables, the variable in the upper left corner (NW) cell is selected and we assign its value x_{ij} = min{a_i, b_j}.
- 2 If $x_{ij} = a_i$, then we do not take the *i*-th row into consideration.

The Northwest Corner Method

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

- Among the basic variables, the variable in the upper left corner (NW) cell is selected and we assign its value x_{ij} = min{a_i, b_j}.
- 2 If $x_{ij} = a_i$, then we do not take the *i*-th row into consideration.
- If x_{ij} = b_j, then we do not take the j-th column into consideration.

The Northwest Corner Method

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

${f Starting} \\ {f methods}$

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

- Among the basic variables, the variable in the upper left corner (NW) cell is selected and we assign its value x_{ij} = min{a_i, b_j}.
- 2 If $x_{ij} = a_i$, then we do not take the *i*-th row into consideration.
- If x_{ij} = b_j, then we do not take the j-th column into consideration.
- **④** In this way, a (imaginally) smaller table is created and we subtract the value of x_{ij} from the corresponding b_j (or a_i).

The Northwest Corner Method

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

- Among the basic variables, the variable in the upper left corner (NW) cell is selected and we assign its value x_{ij} = min{a_i, b_j}.
- 2 If $x_{ij} = a_i$, then we do not take the *i*-th row into consideration.
- If x_{ij} = b_j, then we do not take the j-th column into consideration.
- **④** In this way, a (imaginally) smaller table is created and we subtract the value of x_{ij} from the corresponding b_j (or a_i).
- In this reduced table, we select the upper left cell again and repeat the previous procedure.

The Northwest Corner Method

Operational Analysis

> Štefan Berežný

- Transportation problem
- Formulation of the problem
- Simplex table for TP

$\begin{array}{c} { m Starting} \\ { m methods} \end{array}$

- Unbalanced TP
- Degenerate solution of TP
- Assignment Problem
- Hungarian method
- Summary

- Among the basic variables, the variable in the upper left corner (NW) cell is selected and we assign its value x_{ij} = min{a_i, b_j}.
- 2 If $x_{ij} = a_i$, then we do not take the *i*-th row into consideration.
- 3 If $x_{ij} = b_j$, then we do not take the *j*-th column into consideration.
- **④** In this way, a (imaginally) smaller table is created and we subtract the value of x_{ij} from the corresponding b_j (or a_i).
- In this reduced table, we select the upper left cell again and repeat the previous procedure.
- **6** We finish if the entire table is filled.

Example:

Using the NW corner method, find a distribution plan for the STAVIVA company from the previous example.

The Northwest Corner Method – Example

Operational					
Analysis Štefan Berežný	_	S_1	S_2	S_3	a_i
Transportation problem Formulation	v_1 V_1 u_1	5	10	8	500
of the problem Simplex table for TP	V_2	15	4	11	300
Starting methods Unbalanced TP	V_3	9	7	6	500
Degenerate solution of TP Assignment	b_j	600	400	300	1300
Problem Hungarian method					

The Northwest Corner Method – Example

Operational								
Analysis Štefan Berežný	_	S_1		S_2		S_3		a_i
Transportation problem Formulation	v_1 V_1 u_1	500	5		10		8	500
of the problem Simplex table for TP	V_2		15		4		11	300
Starting methods Unbalanced TP	V_3		9		7		6	500
Degenerate solution of TP Assignment	b_j	600		400		300		1300
Problem Hungarian method								

The Northwest Corner Method – Example

Operational								
Analysis Štefan Berežný	_	S_1		S_2		S_3		a_i
Transportation problem Formulation	v_1 V_1 u_1	500	5		10		8	500
of the problem Simplex table for TP	V_2	100	15		4		11	300
Starting methods Unbalanced TP	V_3		9		7		6	500
Degenerate solution of TP Assignment	b_j	600		400		300		1300
Problem Hungarian method								

The Northwest Corner Method – Example

Operational								
Analysis Štefan Berežný	_	S_1		S_2		S_3		a_i
Transportation problem Formulation	$\overset{n}{}V_{1}$	500	5		10		8	500
of the problem Simplex table for TP	V_2	100	15	200	4		11	300
Starting methods Unbalanced TP	V_3		9		7		6	500
Degenerate solution of TP Assignment	b_j	600		400		300		1300
Problem Hungarian method								

The Northwest Corner Method – Example

Operational								
Analysis Štefan Berežný		S_1		S_2		S_3		a_i
Transportation problem Formulation	V_1	500	5		10		8	500
of the problem Simplex table for TP	V_2	100	15	200	4		11	300
Starting methods Unbalanced TP	V_3		9	200	7		6	500
Degenerate solution of TP Assignment	b_j	600		400		300		1300
Problem Hungarian method								

The Northwest Corner Method – Example

Operational								
Analysis Štefan Berežný	_	S_1		S_2		S_3		a_i
Transportation problem Formulation	V_1	500	5	_	10		8	500
of the problem Simplex table for TP	V_2	100	15	200	4		11	300
Starting methods Unbalanced TP	V_3		9	200	7	300	6	500
Degenerate solution of TP Assignment	b_j	600		400		300		1300
Problem Hungarian method	$f(\vec{x}) = 5$.500 + 15	. 100	0 + 4.200	+7	.200 + 6.	300	= 8000

The Vogel's Approximation Method

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

① In each row and column we calculate and write the first differences (I) (i.e. the differences between the smallest and the second smallest price).

The Vogel's Approximation Method

Operational Analysis

Štefan Berežný

- Transportation problem
- Formulation of the problem
- Simplex table for TP

${f Starting} \\ {f methods}$

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

- In each row and column we calculate and write the first differences (I) (i.e. the differences between the smallest and the second smallest price).
- We select the column (row) with the biggest difference. We want to meet the requirements as much as possible (max. we occupy the cells with the lowest price). We omit the filled column (row).

The Vogel's Approximation Method

Operational Analysis

Štefan Berežný

- Transportation problem
- Formulation of the problem
- Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

- **①** In each row and column we calculate and write the first differences (I) (i.e. the differences between the smallest and the second smallest price).
- We select the column (row) with the biggest difference. We want to meet the requirements as much as possible (max. we occupy the cells with the lowest price). We omit the filled column (row).
- We recalculate new differences in rows (columns), thereby creating a new column (row) of differences (II).

The Vogel's Approximation Method

Operational Analysis

Štefan Berežný

- Transportation problem
- Formulation of the problem
- Simplex table for TP

Starting methods

- Unbalanced TP
- Degenerate solution of TP
- Assignment Problem
- Hungarian method
- Summary

- In each row and column we calculate and write the first differences (I) (i.e. the differences between the smallest and the second smallest price).
- We select the column (row) with the biggest difference. We want to meet the requirements as much as possible (max. we occupy the cells with the lowest price). We omit the filled column (row).
- We recalculate new differences in rows (columns), thereby creating a new column (row) of differences (II).
- We repeat steps 2 and 3 until we get an acceptable solution (we fill in the entire table).

The Vogel's Approximation Method

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

If, when calculating the differences, we get the same largest differences in several rows or columns, then we look for the saddle point (the field with the lowest price in terms of rows and columns). We take the row or column that contains it.

The Vogel's Approximation Method

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

- If, when calculating the differences, we get the same largest differences in several rows or columns, then we look for the saddle point (the field with the lowest price in terms of rows and columns). We take the row or column that contains it.
- 2 If during the calculation we have several saddle points at once, then we decide on the one with the lowest sum of indexes indicating the respective row and column (lexicographic rule).

The Vogel's Approximation Method – Example

Operational Analysis						
Štefan Berežný		S_1	S_2	S_3	a_i	Ι
Transportation problem Formulation of the		5	10	8	500	3
problem Simplex table for TP	V_2	15	4	11	300	7
Starting methods Unbalanced TP Degenerate	u ₂ V ₃	9	7	6	500	1
solution of TP Assignment Problem	$ \begin{array}{c} b_j \\ I \\ \end{array} $	600 4	400	300 2	1300	
Hungarian method						

The Vogel's Approximation Method – Example

Operational Analysis						
Štefan Berežný	_	S_1	S_2	S_3	a_i	Ι
Transportation problem Formulation of the	V_1	5	10	8	500	3
problem Simplex table for TP	V_2	15	4 300	11	300	7
Starting methods Unbalanced TP Degenerate	u ₂ V ₃ u ₃	9	7	6	500	1
solution of TP Assignment Problem	$\begin{matrix} b_j \\ I \end{matrix}$	600 4	400 3	300 2	1300	
Hungarian method						

The Vogel's Approximation Method – Example

Operational Analysis						
Štefan Berežný		S_1	S_2	S_3	a_i	Ι
Transportation problem Formulation		5	10	8	500	3
of the problem Simplex table for TP			300		300	x
Starting methods Unbalanced TP Degenerate		9	7	6	500	1
solution of	b_j	600	400	300	1300	
TP	Ι	4	3	2		
Assignment Problem	II	4	3	2		
Hungarian method						

The Vogel's Approximation Method – Example

Operational Analysis						
Štefan Berežný		S_1	S_2	S_3	a_i	Ι
Transportation problem Formulation of the		5 500	10	8	500	3
problem Simplex table for TP	V_2		300		300	x
Starting methods Unbalanced TP Degenerate	V3 u3	9	7	6	500	1
solution of	b_j	600	400	300	1300	
TP	I	4	3	2		
Assignment Problem	II	4	3	2		
Hungarian method						

The Vogel's Approximation Method – Example

Operational						
Analysis Štefan Berežný		S_1	S_2	S_3	a_i	Ι
Transportation problem Formulation		500			500	x
of the problem Simplex table for TP	V_2		300		300	x
Starting methods Unbalanced TP	V_3	9 100	7 100	6 300	500	1
Degenerate	b_j	600	400	300	1300	
solution of TP	Ι	4	3	2		
Assignment Problem	II	4	3	2		

Hungarian method

The Vogel's Approximation Method – Example

Operational						
Analysis Štefan Berežný		S_1	S_2	S_3	a_i	Ι
Transportation problem Formulation	V_1	500			500	x
of the problem Simplex table for TP	V_2		300		300	x
Starting methods Unbalanced TP	V_3	9 100	7 100	6 300	500	1
Degenerate solution of TP	b_j I	600 4	400	300 2	1300	
Assignment Problem Hungarian	II $f(\vec{x}) = 5.4$	$\frac{4}{500+4.300}$ -	$\frac{3}{9.100+7.}$	$\frac{2}{100+6.300}$	= 7100	

method Summary

Optimality Test

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

• We construct an equation for each basic cell $u_i + v_j = c_{ij}$.

Optimality Test

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

${f Starting} \\ {f methods}$

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

- We construct an equation for each basic cell $u_i + v_j = c_{ij}$.
- We assign any value to one of the variables (parameters) (e.g. v₃ = 0) and calculate the others with respect to the parameter.

Optimality Test

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

- We construct an equation for each basic cell $u_i + v_j = c_{ij}$.
- We assign any value to one of the variables (parameters) (e.g. v₃ = 0) and calculate the others with respect to the parameter.
- **3** We write the calculated values of u_i and v_j in the table.

Optimality Test

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

${f Starting} \\ {f methods}$

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

- We construct an equation for each basic cell $u_i + v_j = c_{ij}$.
- We assign any value to one of the variables (parameters) (e.g. v₃ = 0) and calculate the others with respect to the parameter.
- **3** We write the calculated values of u_i and v_j in the table.
- **4** We calculate the values $c'_{ij} = u_i + v_j$ of each cell and write them in the table.

Optimality Test

Operational Analysis

> Štefan Berežný

- Transportation problem
- Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

- We construct an equation for each basic cell $u_i + v_j = c_{ij}$.
- We assign any value to one of the variables (parameters) (e.g. v₃ = 0) and calculate the others with respect to the parameter.
- **3** We write the calculated values of u_i and v_j in the table.
- (4) We calculate the values $c'_{ij} = u_i + v_j$ of each cell and write them in the table.
- **5** We calculate $d_{ij} = c'_{ij} c_{ij}$ and write all values in the table (for basic cells it must be $c'_{ij} = c_{ij}$).

Optimality Test

Operational Analysis

> Štefan Berežný

- Transportation problem
- Formulation of the problem
- Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

- We construct an equation for each basic cell $u_i + v_j = c_{ij}$.
- We assign any value to one of the variables (parameters) (e.g. v₃ = 0) and calculate the others with respect to the parameter.
- **3** We write the calculated values of u_i and v_j in the table.
- (4) We calculate the values $c'_{ij} = u_i + v_j$ of each cell and write them in the table.
- **5** We calculate $d_{ij} = c'_{ij} c_{ij}$ and write all values in the table (for basic cells it must be $c'_{ij} = c_{ij}$).
- 6 If all values of $d_{ij} \leq 0$, then this basic feasible solution is optimal.

If the given basic feasible solution is not optimal, we pivot the table, then after pivoting we do the optimality test again.

Optimality Test – Example

Operational Analysis Štefan Berežný Transportation Formulation of the Simplex table for TP Starting methods Unhalanced TP Degenerate solution of TP Assignment Problem Hungarian method Summary

Test whether the distribution plans for STAVIVA company obtained using the NW corner method are optimal.

		v_1	S_1		v_2	S_2		v_3	S_3	
u1	V_1		500	5			10			8
u_2	V_2		100	15		200	4			11
u_3	V_3			9		200	7		300	6

Optimality Test – Example

Operational Analysis	For each basic cell, we construct the equation $u_i + v_j = c_{ij}$:
Štefan Berežný	$u_1 + v_1 = 5$
	$u_2 + v_1 = 15$
Transportatio problem	$u_2 + v_2 = 4$
Formulation of the problem	$u_3 + v_2 = 7$
Simplex table for TP	$u_3 + v_3 = 6$
Starting methods	
Unbalanced TP	
Degenerate solution of TP	
Assignment Problem	
Hungarian method	
Summary	

Optimality Test – Example

Operational Analysis	For each basic cell, we construct the equation $u_i + v_j = c_{ij}$:
Štefan Berežný	$u_1 + v_1 = 5$
Derezity	$u_2 + v_1 = 15$
Transportation problem	$u_2 + v_2 = 4$
Formulation of the problem	$u_3 + v_2 = 7$
Simplex table for TP	$u_3 + v_3 = 6$
Starting methods	
Unbalanced TP	Let $u_1 = 0$
Degenerate solution of	

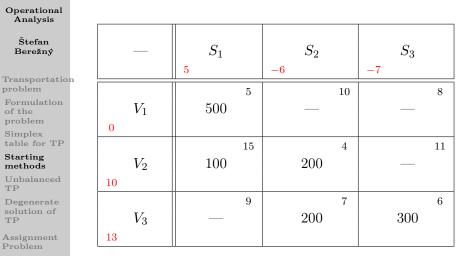
Assignment Problem

Hungarian method

Optimality Test – Example

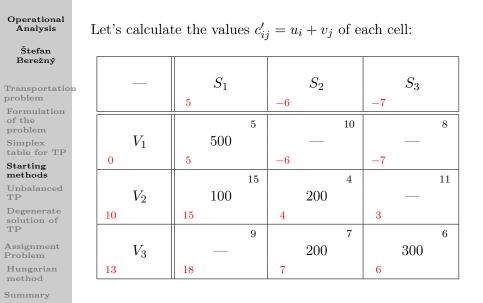
Operational Analysis	For each basic cell, we construct the equation $u_i + v_j = c_{ij}$:
Štefan Berežný	$u_1 + v_1 = 5$
-	$u_2 + v_1 = 15$
Transportation problem	$u_2 + v_2 = 4$
Formulation of the problem	$u_3 + v_2 = 7$
Simplex table for TP	$u_3 + v_3 = 6$
Starting methods	
Unbalanced TP	Let $u_1 = 0$ $v_1 = 5$
Degenerate solution of	$u_2 = 10$ $v_2 = -6$
ТР	
Assignment Problem	$u_3 = 13$
Hungarian method	$v_{3} = -7$
Summary	

Optimality Test – Example



Hungarian method

Optimality Test – Example



Optimality Test – Example

Operational Analysis		Let's	calcul	ate t	he val	ues a	$d_{ij} =$	c'_{ij} –	c_{ij} :			
Štefan Berežný				5	S_1		-6	S_2		-7	S_3	
Transportation problem	n					5			10			8
Formulation of the problem			V_1		500	5			10			0
Simplex		0		5		0	-6		-16	-7		-15
table for TP						15			4			11
${f Starting}\ {f methods}$			V_2		100			200				
Unbalanced TP		10		15		0	4		0	3		-8
Degenerate						9			7			6
solution of TP			V_3		—			200			300	
Assignment Problem		13		18		9	7		0	6		0
Hungarian												

method Summary

Optimality Test – Example

Operational Analysis		Let's calculate the values $d_{ij} = c'_{ij} - c_{ij}$:										
Štefan Berežný				5	S_1		-6	S_2		-7	S_3	
Transportation problem	1					5			10			8
Formulation of the problem		V_1			500	9			10			8
Simplex		0		5		0	-6		-16	-7		-15
table for TP						15			4			11
Starting methods		V_2			100			200				
Unbalanced TP		10		15		0	4		0	3		-8
Degenerate						9			7			6
solution of TP		V_3						200			300	
Assignment Problem		13		18		9	7		0	6		0
Hungarian method		The value	ie a	$l_{31} >$	0 and	this	s basi	c feas	ible so	olutio	n is n	ot
Summary		optimal, therefore we pivot the table.										

Table Pivoting

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

① In the empty cell with the largest value d_{ij} , we add a sign in the upper left corner \oplus .

Table Pivoting

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

${f Starting} \\ {f methods}$

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

- **1** In the empty cell with the largest value d_{ij} , we add a sign in the upper left corner \oplus .
- ② We create a cycle of alternating signs by starting in the marked cell ⊕ and in the table we can:

• move only up, down, left and right,

• we can change the direction only on an occupied cell.

Table Pivoting

Operational Analysis

Štefan Berežný

- Transportation problem
- Formulation of the problem
- Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

- **①** In the empty cell with the largest value d_{ij} , we add a sign in the upper left corner \oplus .
- ② We create a cycle of alternating signs by starting in the marked cell ⊕ and in the table we can:
 - move only up, down, left and right,
 - we can change the direction only on an occupied cell.

We gradually add \ominus or \oplus to the upper left corner of these occupied cells, in which we have changed direction, until we return to the cell from which we started.

Table Pivoting

Operational Analysis

Štefan Berežný

- Transportation problem
- Formulation of the problem
- Simplex table for TP

${f Starting} \\ {f methods}$

Unbalanced TP

- Degenerate solution of TP
- Assignment Problem

Hungarian method

Summary

- **①** In the empty cell with the largest value d_{ij} , we add a sign in the upper left corner \oplus .
- ② We create a cycle of alternating signs by starting in the marked cell ⊕ and in the table we can:
 - move only up, down, left and right,
 - we can change the direction only on an occupied cell.

We gradually add \ominus or \oplus to the upper left corner of these occupied cells, in which we have changed direction, until we return to the cell from which we started.

We take the minimum from the minus cells, then we distribute it over the cycle according to the signs, i.e. we either add or subtract this minimum to the given x_{ij} values, which gives us a new basic feasible solution.

Table Pivoting – Example

Operational Analysis

Štefan

Trai prob For of t Sim tab Star met Unk TP Deg solu TP Assi Pro Hu

Example:

Find the optimal delivery plan for STAVIVA company.

Berežný												
ransportation roblem	n				S_1			S_2			S_3	
Formulation of the				5			-6			-7		
problem						5			10			8
implex able for TP			V_1		500							
Starting nethods		0		5		0	-6		-16	-7		-15
Jnbalanced				\ominus		15	\oplus		4			11
CP Degenerate			V_2		100			200				
olution of		10		15		0	4		0	3		-8
				\oplus		9	θ		7			6
.ssignment roblem			V_3					200			300	
Hungarian nethod		13		18		9	7		0	6		0

Table Pivoting – Example

Operational Analysis

We test optimality again.

Štefan Berežný

- Transportation problem
- Formulation of the problem
- Simplex table for TP

Starting methods

- Unbalanced TP
- Degenerate solution of TP
- Assignment Problem
- Hungarian method
- Summary

			S_1			S_2			S_3	
		v_1			v_2			v_3		
				5			10			8
	V_1		500							
u_1										
		θ		15	\oplus		4			11
	V_2					300				
u_2										
		\oplus		9	θ		7			6
	V_3		100			100		ę	300	
u_3										

Transportation problem Table Pivoting – Example

Operational Analysis	We construct an equation for each basic cell $u_i + v_j = c_{ij}$:
Štefan Berežný	$u_1 + v_1 = 5$
	$u_2 + v_2 = 4$
Transportatio problem	$u_3 + v_1 = 9$
Formulation of the problem	$u_3 + v_2 = 7$
Simplex table for TP	$u_3 + v_3 = 6$
Starting methods	
Unbalanced TP	
Degenerate solution of TP	
Assignment Problem	
Hungarian method	
Summary	

Transportation problem Table Pivoting – Example

Operational Analysis	We construct an equation for each basic cell $u_i + v_j = c_{ij}$:
Štefan Berežný	$u_1 + v_1 = 5$
Derezity	$u_2 + v_2 = 4$
Transportation problem	$u_3 + v_1 = 9$
Formulation of the problem	$u_3 + v_2 = 7$
Simplex table for TP	$u_3 + v_3 = 6$
Starting methods	
Unbalanced TP	Let $u_1 = 0$
Degenerate solution of	

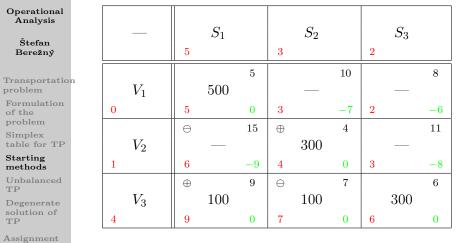
method Summary

TP Assignment Problem Hungarian

Transportation problem Table Pivoting – Example

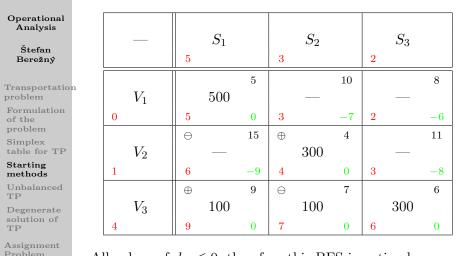
Operational Analysis	We construct an equation for each basic cell $u_i + v_j = c_{ij}$:
Štefan Berežný	$u_1 + v_1 = 5$
	$u_2 + v_2 = 4$
Transportation problem	$u_3 + v_1 = 9$
Formulation of the problem	$u_3 + v_2 = 7$
Simplex table for TP	$u_3 + v_3 = 6$
Starting methods	
Unbalanced TP	Let $u_1 = 0$ $v_1 = 5$
Degenerate solution of	$u_3 = 4$
TP	$v_2 = 3$
Assignment Problem	$u_2 = 1$
Hungarian method	$v_3 = 2$

Table Pivoting – Example



- Problem Hungarian
- method
- Summary

Table Pivoting – Example



All values of $d_{ij} \leq 0$, therefore this BFS is optimal: $f^{opt} = 5.500 + 4.300 + 9.100 + 7.100 + 6.300 = 7100.$

method Summary

Hungarian

An Unbalanced Transportation Problem

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

$$a_{m+1} = \sum_{j=1}^{n} b_j - \sum_{i=1}^{n} a_i$$

and all prices $c_{m+1,j} = 0$, for j = 1, 2, ..., n.

An Unbalanced Transportation Problem

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

$$a_{m+1} = \sum_{j=1}^{n} b_j - \sum_{i=1}^{n} a_i$$

and all prices $c_{m+1,j} = 0$, for j = 1, 2, ..., n.

2 $\sum_{i=1}^{m} a_i > \sum_{j=1}^{n} b_j \Rightarrow$ the total capacities of suppliers exceed the total demands of customers, so we add a dummy customer O_{n+1} with a request $b_{n+1} = \sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j$

and all prices $c_{i,n+1} = 0$, for i = 1, 2, ..., m.

An Unbalanced Transportation Problem – Example

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

Enterprise MLYNY, s.r.o. from its three mills (M_1, M_2, M_3) supplies flour to 4 bakeries (P_1, P_2, P_3, P_4) . The costs of transporting one ton of flour from mills to bakeries as well as their requirements and capacities are shown in the table. Create a flour delivery plan for the lowest cost.

	P_1	P_2	P_3	P_4	a_i
M_1	12	9	7	13	380
M_2	6	15	10	11	400
M_3	7	14	17	9	350
b_j	330	280	300	250	$1160 \setminus 1130$

Degenerate solution

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

Definition: (Degenerate solution)

If the number of nonzero values for x_{ij} (number of occupied (filled out) cells) is less than m + n - 1, then the solution is called **degenerate**.

Degenerate solution

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

Definition: (Degenerate solution)

If the number of nonzero values for x_{ij} (number of occupied (filled out) cells) is less than m + n - 1, then the solution is called **degenerate**.

Degeneration in TP arises from two causes:

- when calculating the feasible solution (if in the input for some i, j applies $a_i = b_j$)
- during pivoting (if there are the same value in several fields with ⊖ – the minimum one)

Degenerate solution

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

Definition: (Degenerate solution)

If the number of nonzero values for x_{ij} (number of occupied (filled out) cells) is less than m + n - 1, then the solution is called **degenerate**.

Degeneration in TP arises from two causes:

- when calculating the feasible solution (if in the input for some i, j applies $a_i = b_j$)
- during pivoting (if there are the same value in several fields with ⊖ the minimum one)

Degeneration removal:

⇒ fill the fill out cells with zeros so that there are just m + n - 1 fill outcells (We have to choose so that all blocks are connected, so they don't just touch the corners)

Degenerate solution – Example

Operational Find the optimal solution for the transport problem given Analysis in the following table: Štefan Berežný O_1 O_2 O_3 a_i v_1 v_2 v_3 Transportation 2040 50Formulation of the D_1 8 problem Simplex u_1 table for TP 40 5040 Starting D_2 14 Unhalanced TP u_2 Degenerate 502070solution of TP D_3 6 Assignment u_3 Problem 8 9 11 28Hungarian b_i method

Assignment Problem

Assignment problem formulation

Operational Analysis

Štefan Berežný

- Transportation problem
- Formulation of the problem
- Simplex table for TP
- Starting methods
- Unbalanced TP
- Degenerate solution of TP

Assignment Problem

- Hungarian method
- Summary

- Another type of linear programming problem can be said to be a subtype of a transportation problem
- it is a matter of assigning a certain number of objects to the same number of destinations so that the objective function is minimal resp. maximal
- the objective function can be a function of distance, time, cost, efficiency,...
- it depends on the specific case whether the task will be minimizing or maximizing.

Assignment Problem

Assignment problem formulation

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

• *n* objects (O_1, O_2, \ldots, O_n)

- *n* destinations (M_1, M_2, \ldots, M_n)
- c_{ij} rates (prices) for the relationship between i^{th} object and j^{th} destination
- x_{ij} variable expressing whether i^{th} object will be assigned to j^{th} destination

Assignment Problem

Assignment problem formulation

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

```
Summary
```

• *n* objects (O_1, O_2, \ldots, O_n)

- *n* destinations (M_1, M_2, \ldots, M_n)
- c_{ij} rates (prices) for the relationship between i^{th} object and j^{th} destination
- x_{ij} variable expressing whether i^{th} object will be assigned to j^{th} destination

Differences compared to the transportation problem:

- the problem is integer
- all "supplier capacities" and "customer requirements" are equal 1
- x_{ij} a variable takes on the values 0 or 1 only

Assignment Problem

Standard form of the assignment problem

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

 $f(\boldsymbol{x}) = \sum_{i=1}^{m} \sum_{j=1}^{n} (c_{ij} x_{ij}) \to \max$ $\sum_{j=1}^{n} x_{ij} = 1 \qquad \text{pre } i = 1, 2, \dots, n$ $\sum_{i=1}^{n} x_{ij} = 1 \qquad \text{pre } j = 1, 2, \dots, n$ $x_{ij} \in \{0, 1\} \qquad \text{pre } i, j = 1, 2, \dots, n$

Assignment Problem – Hungarian method Hungarian method – Description

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

- \Rightarrow the assignment problem is considerably degenerate it contains only *n* non-zero values so it is maximally degenerate
- \Rightarrow the result is a large amount of inefficient pivoting
- ⇒ for solving of the Assignment Problem is used the so-called Hungarian method (but the objective function must be minimized)

Assignment Problem – Hungarian method Hungarian method – Description

Operational Analysis

> Štefan Berežný

- Transportation problem
- Formulation of the problem
- Simplex table for TP
- Starting methods
- Unbalanced TP
- Degenerate solution of TP
- Assignment Problem
- Hungarian method
- Summary

- \Rightarrow the assignment problem is considerably degenerate it contains only n non-zero values so it is maximally degenerate
- \Rightarrow the result is a large amount of inefficient pivoting
- ⇒ for solving of the Assignment Problem is used the so-called Hungarian method (but the objective function must be minimized)

Hungarian Method Algorithm:

- Reduction of the rate matrix (square) \Rightarrow obtain the initial solution.
- ② Finding Independent Zeros ⇒ Finding the optimal solution if we have n independent zeros.
- **3** Construction of covering lines.
 - **④** Further reduction of the rate matrix.
 - 5 Return to point 2, or find the optimal solution.

Assignment Problem – Hungarian method Hungarian method – 1. Rate matrix reduction

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

① There is a minimum rate of c_{ij} in each line, which is subtracted from the other rates in the line \Rightarrow to ensure that at least one zero reduced rate is created in each line.

Assignment Problem – Hungarian method Hungarian method – 1. Rate matrix reduction

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

- **①** There is a minimum rate of c_{ij} in each line, which is subtracted from the other rates in the line \Rightarrow to ensure that at least one zero reduced rate is created in each line.
- 2 It is checked whether there are zero reduced rates in each column as well.

Assignment Problem – Hungarian method Hungarian method – 1. Rate matrix reduction

Operational Analysis

Štefan Berežný

- Transportation problem
- Formulation of the
- Simplex table for TP
- Starting methods
- Unbalanced TP
- Degenerate solution of TP
- Assignment Problem

Hungarian method

- **①** There is a minimum rate of c_{ij} in each line, which is subtracted from the other rates in the line \Rightarrow to ensure that at least one zero reduced rate is created in each line.
- 2 It is checked whether there are zero reduced rates in each column as well.
- 3 If not, a rate reduction will also be performed in those columns where there has been no zero rate so far, thus ensuring that there is at least one zero reduced rate in each row and column.

Assignment Problem – Hungarian method Hungarian method – 2. Finding independent zeros

Operational Analysis

Štefan Berežný

- Transportation problem
- Formulation of the
- Simplex
- table for TP
- Starting methods
- Unbalanced TP
- Degenerate solution of TP
- Assignment Problem

Hungarian method We will try to assign the maximum possible number of non-zero values to variables with zero reduced rates, preferentially assigning non-zero values to variables in which rows or columns there is a minimum number of zero rates (preferably only one)

- ⇒ if all objects can be assigned to the destination in this way (i.e. if the number of all non-zero values of the variables x_{ij} is equal to the dimension of the task n) ⇒ we have an optimal solution and the value of its objective function must be determined from the original rate matrix,
- \Rightarrow if not, we need to make adjustments to the \Rightarrow cover lines construction.

Assignment Problem – Hungarian method Hungarian method – 3. Construction of cover lines

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

All variables with zero reduced rates cover the minimum number of so-called cover lines. At the same time, firstly are covered these rows or columns in which there are maximum number of zero reduced rates. According to the so-called a König theorem, the number of cover lines should be equal to the number obtained non-zero variables (at the same time it is also a check of the correctness of the solution).

Assignment Problem – Hungarian method Hungarian method – 3. Construction of cover lines

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

All variables with zero reduced rates cover the minimum number of so-called cover lines. At the same time, firstly are covered these rows or columns in which there are maximum number of zero reduced rates. According to the so-called a König theorem, the number of cover lines should be equal to the number obtained non-zero variables (at the same time it is also a check of the correctness of the solution).

The minimum rate for uncovered variables is found and it is:

I. reduced from the rates of the non-covering variables.

- **II.** added to the rates of the twice-covered variables (where the cover lines intersect).
- **III.** The rates of the variables that are covered once remain unchanged.

Assignment Problem – Hungarian method Hungarian method – 3. Construction of cover lines

Operational Analysis

> Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

All variables with zero reduced rates cover the minimum number of so-called cover lines. At the same time, firstly are covered these rows or columns in which there are maximum number of zero reduced rates. According to the so-called a König theorem, the number of cover lines should be equal to the number obtained non-zero variables (at the same time it is also a check of the correctness of the solution).

The minimum rate for uncovered variables is found and it is:

I. reduced from the rates of the non-covering variables.

- **II.** added to the rates of the twice-covered variables (where the cover lines intersect).
- **III.** The rates of the variables that are covered once remain unchanged.

 \Rightarrow this procedure creates a new matrix of reduced rates and repeats the process

Assignment Problem – Hungarian method Hungarian method – Example

Operational Analysis

Štefan Berežný

Transportation problem

Formulation of the problem

Simplex table for TP

Starting methods

Unbalanced TP

Degenerate solution of TP

Assignment Problem

Hungarian method

Summary

Company STAVMAT has 3 cranes at its disposal, which it needs to move to 3 constructions so that the costs are minimal. The costs of transporting specific cranes to specific constructions are listed in the following table.

	S1	S2	S3
Z1	4	3	1
Z2	1	2	6
Z3	4	5	3

Linear Optimization

Summary

Operational Analysis	
Štefan Berežný	
Transportatio: problem	n
Formulation of the problem	THANK Y
Simplex table for TP	
Starting methods	
Unbalanced TP	
Degenerate solution of TP	
Assignment Problem	
Hungarian method	
Summary	

THANK YOU FOR YOUR ATTENTION.