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GRAPHS

Definition
A graph is a pair G = (V ,E ) where V is a nonempty finite set and E is a set of
two–element subsets of V .

G = (V ,E )
V = {v1, v2, v3, v4}, E = {{v1, v3}, {v2, v4}, {v1, v4}, {v2, v3}}

The elements of V are called the vertices of the graph, and the elements of E are
called the edges of the graph.
Let G be a graph. If we neglect to give a name to the vertex set and edge set of
G , we can simply write V (G) and E (G) for the vertex and edge sets, respectively.
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GRAPHS

How to draw pictures of graphs? These pictures make graphs much easier to
understand.
A drawing of the graph G = (V ,E ) is a mapping that assing a point in the plane
for each vertex and for each edge a continuous curve between its two endpoints.
A drawing of the graph is not the same thing as the graph itself.
The following two drawings both depict the same graph.

v3v1

v4 v2 v1 v2 v3 v4
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GRAPHS

Definition
A multigraph G = (V ,E ) consists of a set of vertices V , a set of edges E , and a
function f from E to {{u, v} : u, v ∈ V , u 6= v}. The edges e1 and e2 are called
multiple or parallel edges if f (e1) = f (v2).

G = (V ,E )
V = {v1, v2, v3, v4}, E = {{v1, v3}, {v2, v4}, {v1, v4}, {v2, v3}, {v1, v4}{v1, v3}}

v3v1

v4 v2
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GRAPHS

Definition
Two vertices u and v in a graph G = (V ,E ) are called adjacent in G if {u, v} is
an edge of G.
If e = {u, v}, the edge e is called incident with the vertices u and v.

If {u, v} is an edge of G , we call u and v the endpoints of the edge.

Definition
Let G = (V ,E ) be a graph and let v ∈ V . The degree of v is the number of edges
with which v is incident. The degree of v is denoted deg(v) or δ(v).

Theorem
Let G = (V ,E ). The sum of the degrees of the vertices in G is twice the number
of edges, that is, ∑

v∈V
deg(v) = 2 · |E |
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GRAPHS

Definition
If all vertices in G have the same degree, we call G regular. If a graph is regular
and all vertices have degree r , we also call the graph r–regular.
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GRAPHS

Definition
Let G be a graph. If all pairs of distinct vertices are adjacent in G, we call G
complete. A complete graph on n vertices is denoted Kn.

The opposite extreme is a graph with no edges. We call such graphs edgeless.
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GRAPHS

Definition
Let m, n ∈ N. The complete bipartite graph, Km,n, is a graph whose vertices can
be partitioned V = V1 ∪ V2 such that
• |V1| = m and |V2| = n
• for all u ∈ V1 and for all v ∈ V2, {u, v} is an edge.
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GRAPHS

Definition
Let G1 = (V1,E1) and G2 = (V2,E2) be graphs. We say that G1 is isomorphic to
G2 provided there is a bijection f : V1 → V2 such that for all u, v ∈ V1 we have
{u, v} ∈ E1 if and only {f (u), f (v)} ∈ E2. The function f is called an
isomorphism of G1 to G2.
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GRAPHS

Definition
Let G = (V ,E ) and G1 = (V1,E1) be graphs. We call G1 a subgraph of G
provided V1 ⊆ V and E1 ⊆ E.

Definition
Let G = (V ,E ) be a graph. We call G1 = (V1,E1) a spanning subgraph of G
provided V1 = V and E1 ⊆ E.

Definition
Let G be a graph. The complement of G is the graph denoted G defined by

V (G) = V (G)

E (G) = {{u, v} : u, v ∈ V (G), u 6= v , {u, v} /∈ E (G)}

.
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GRAPHS

Definition
Let G = (V ,E ) be a graph. A walk of length n (n ∈ N) in G is a sequence of
vertices v0, v1, . . . vn of the graph such that {v0, v1}, {v1, v2}, . . . {vn−1, vn} are
edges, where v0 = u and vn = v.
A path of length n in a graph is a walk in which no vertex is repeated.
A path on n edges is denoted Pn.
A cycle is a path of length at least three in which the first and the last vertex are
the same, but no other vertices are repeated.
A cycle on n edges is denoted Cn.
A length of a walk (path, cycle) is the number of edges on that walk (path, cycle).

(u, v)–path
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GRAPHS

Definition
A graph G = (V ,E ) is called connected provided for all u, v ∈ V there is
(u, v)–path.

A connected graph consists of one "piece", while a graph that is not connected
consists of two or more "pieces". These "pieces"we called components of the
graph.

Definition
Let G = (V ,E ) be a graph and let u, v ∈ V . The distance from u to v in G is the
length of the shortest (u, v)–path. In case there is no such a path, we may either
say that the distance is undefined or distance is ∞. The distance from u to v is
denoted d(u, v).
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GRAPHS

Definition
Let s1, s2, s3, . . . , sn be nonnegative integer numbers. Sequence s1, s2, s3, . . . , sn is
called graphical if there is a graph with n vertices whose degrees are
s1, s2, s3, . . . , sn.

Theorem
Havel’s Theorem
Let s1, s2, s3, . . . , sn n ≥ 2, 1 ≤ s1 ≤ n − 1 be nonnegative integer numbers so
that s1 ≥ s2 ≥ s3 ≥ · · · ≥ sn. This sequence is graphical if and only if the
sequence s2 − 1, s3 − 1, . . . , ss1+1 − 1, ss1+2, . . . , sn is graphical.

Note that in the sequence s1, s2, s3, . . . , sn we delete number s1 and the following
s1 members will be reduced by 1.
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GRAPHS

Example
Decide whether a sequence 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4 is graphical. If it is
graphical sequence, sketch a drawing of a graph.

Solution:
4 , 4, 4, 4, 3, 3, 3, 2, 1, 1, 1 n = 11, s1 = 4,

3, 3, 3, 2, 3, 3, 2, 1, 1, 1 we arrange the members

3 , 3, 3, 3, 3, 2, 2, 1, 1, 1 n = 10, s1 = 3,

2, 2, 2, 3, 2, 2, 1, 1, 1 we arrange the members

3 , 2, 2, 2, 2, 2, 1, 1, 1 n = 9, s1 = 3,

1, 1, 1, 2, 2, 1, 1, 1 n = 8
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GRAPHS

The last sequence 1, 1, 1, 2, 2, 1, 1, 1 is graphical, because there is a graph,
denoted by G1, with 8 vertices whose degrees are 1, 1, 1, 2, 2, 1, 1, 1.

G1

So, the first sequence 4, 4, 4, 4, 3, 3, 3, 2, 1, 1, 1 is graphical too.

Now we sketch a drawing of the graph with 11 vertices whose degrees are 1, 1, 1,
2, 3, 3, 3, 4, 4, 4, 4.

G2: 2, 2, 2, 3, 2, 2, 1, 1, 1 G3: 3, 3, 3, 2, 3, 3, 2, 1, 1, 1 G4: 4, 4, 4, 4, 3, 3, 3, 2, 1, 1, 1
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GRAPHS AND MATRICES

Definition
Suppose that G = (V ,E ) is a graph where V = {v1, v2, . . . , vn}. The adjacency
matrix B of G is the n× n zero–one matrix with 1 as its (i , j)th entry when vi and
vj are adjacent, and 0 as its (i , j)th entry when they are not adjacent. In another
words, if its adjacency matrix is B = (bij), then

bij =
{

1 if {vi , vj} ∈ E ,
0 otherwise.

The adjacency matrix of a graph is symmetric, that bij = bji , since both of these
entries are 1 when vi and vj are adjacent, and both are 0 otherwise.
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GRAPHS AND MATRICES

Definition
Let G = (V ,E ) be a graph. Suppose that v1, v2, . . . , vn are vertices and
e1, e2, . . . , em are the edges of G. Then the incidence matrix with respect to this
ordering of V and E is the n ×m matrix A = (aij) where

aij =
{

1 if ej = {vi , vk} ∈ E ,
0 otherwise.

Note that in the incidence matrix A of a graph each column has two 1’s and that
the sum of a row gives the degree of the vertex identified with that row.
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GRAPHS

Example
Write the adjacency matrix B and the incidence matrix A for the graph G

v1

v2

v3

v4

v5

v6

h1

h2

h6

h3

h4

h5

h9

h8

h7

Solution: Vertices and edges are denoted.
Incidence matrix:

h1 h2 h3 h4 h5 h6 h7 h8 h9

A =

v1
v2
v3
v4
v5
v6


1 1 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 1 0
0 0 0 1 0 0 0 1 1
0 0 0 0 1 1 1 0 1

 .
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GRAPHS

Adjacency matrix:
v1 v2 v3 v4 v5 v6

B =

v1
v2
v3
v4
v5
v6


0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 1
1 0 0 0 1 1
1 0 0 1 0 1
1 0 1 1 1 0

 .
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GRAPHS AND MATRICES

Let B be adjacency matrix of a connected graph G = (V ,H), |V | = n. Let B(1)

be the matrix obtained from B by replacing 0’s by 1’s on the main diagonal. Thus,
B(1) = B + E , where E is the identity matrix of the same size. For k ≥ 1, define
zero–one matrix

B(k) = B(k−1) · B(1)

such that its (i , j)th entry

b(k)
ij =

n∑
r=1

b(k−1)
ir · b(1)

rj

is 1 if and only if there is at least one r , r ∈ {1, 2, . . . n}, for which both
b(k−1)

ir = 1 and b(1)
rj = 1.
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GRAPHS AND MATRICES

Theorem
Let B be the adjacency matrix of a connected graph G = (V ,E ), |V | = n. Then
for any k, k = 1, 2, . . . , n, the (i , j)th entry of the matrix B(k) equals 1 if and only
if d(vi , vj) ≤ k.

Note that the (i , j)th entry of the matrix B(k) equals 0 if and only if d(vi , vj) > k.

Theorem
Let G = (V ,E ), |V | = n be a graph. The graph G is connected if and only if all
entries of matrix B(n−1) are equal to 1.
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GRAPHS AND MATRICES

Example
Let

B =


0 1 1 0 1 0
1 0 0 0 0 0
1 0 0 0 0 1
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 1 0 0

 .

be adjacency matrix of the graph. Without drawing a graph, determine pairs of
vertices whose distance is
a) greater than 2,
b) less than or equal to 3,
c) less than 2,
d) equal to 3.

Is a given graph connected?
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GRAPHS AND MATRICES

Solution: |V | = 6

B(1) = B + E =


1 1 1 0 1 0
1 1 0 0 0 0
1 0 1 0 0 1
0 0 0 1 0 1
1 0 0 0 1 0
0 0 1 1 0 1

 .

B(2) = B(1) · B(1) =


1 1 1 0 1 1
1 1 1 0 1 0
1 1 1 1 1 1
0 0 1 1 0 1
1 1 1 0 1 0
1 0 1 1 0 1

 .
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GRAPHS AND MATRICES

B(3) = B(2) · B(1) =


1 1 1 1 1 1
1 1 1 0 1 1
1 1 1 1 1 1
1 0 1 1 0 1
1 1 1 0 1 1
1 1 1 1 1 1

 .

B(4) = B(3) · B(1) =


1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

 .

B(5) = B(4) · B(1) = B(4)
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GRAPHS AND MATRICES

a) Distance d(vi , vj) > 2 if and only if b(2)
ij = 0.

It applies to distances: d(v1, v4), d(v2, v4), d(v2, v6), d(v4, v5), d(v5, v6).
b) Distance d(vi , vj) ≤ 3 if and only if b(3)

ij = 1.
It applies to all distances except d(v2, v4) and d(v4, v5).

c) Distance d(vi , vj)2 (t. j. d(vi , vj) ≤ 2) if and only if b(1)
ij = 1.

It applies to distances: d(v1, v1), d(v1, v2), d(v1, v3), d(v1, v5), d(v2, v2),
d(v3, v3), d(v3, v6), d(v4, v4), d(v4, v6), d(v5, v5), d(v6, v6).

d) Distance d(vi , vj) = 3 (t. j. d(vi , vj) ≤ 3 and d(vi , vj) > 2) if and only if
b(2)

ij = 0 and b(3)
ij = 1.

d(v1, v4), d(v2, v6), d(v5, v6).
As matrix B(5) contains only 1’s, then the given graph is connected.
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TREES

Definition
A tree is a connected graph with no cycles.

Definition
A leaf of a graph is a vertex of degree 1.

Theorem
Every tree with at least two vertices has a leaf.

Theorem
Let T be a tree. For any two vertices u and v in V (T ), there is a unique
(u, v)–path. Conversely, if G is a graph with the property that for any two vertices
u, v there is exactly one (u, v)–path, then G must be a tree.
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TREES

Theorem
Let T be a tree with n ≥ 1 vertices. Then T has n − 1 edges.

Theorem
Let T be a graph with n ≥ 1 vertices. The following are equivalent.
(a) T is a tree.
(b) T is connected without cycles.
(c) T is connected and has n − 1 edges.
(d) T has no cycles and has n − 1 edges.
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SPANNING TREES

Definition
Let G be a graph. A spanning tree of G is a spanning subgraph of G that is a tree.

Theorem
A graph has a spanning tree if and only if it is connected.

Graph K3,3 and its spanning tree.
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SPANNING TREES

Theorem
Let B be an adjacency matrix for a graph G = (V ,E ), |V | = n. Assume a n × n
matrix D = (dij) where

dij =
{

0 if i 6= j ,
δ(vi ) if i = j .

The number of spanning trees of G, denoted p(T ), is determine by formula

p(T ) = det(D − B)i ,

where (D − B)i is a matrix D − B without i-th row and i-th column.

3. apríla 2025 29 / 60



COLOURING

Definition
Let G be a graph and let k be a positive integer. A k–colouring of G is a function

f : V (G)→ {1, 2, . . . , k}.

We call this colouring proper provided

∀{x , y} ∈ E (G) : f (x) 6= f (y).

If a graph has a proper k–colouring, we call it k–colourable.

To each vertex v the function f associates a value f (v). The value f (v) is a
colour of v . The palette of colours we use in the set {1, 2, . . . , k}.
The condition ∀{x , y} ∈ E (G) : f (x) 6= f (y) means that whenever vertices x and
y are adjacent, then these vertices must get different colours. In a proper
colouring, adjacent vertices are not assigned the same colour.
The goal in graph colouring is to use as few colours as possible.
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COLOURING

Definition
Let G be a graph. The smallest possitive integer k for which G is k–colourable is
called the chromatic number of G.
The chromatic number of G is denoted χ(G).

Theorem
Let G be a graph with maximum degree ∆. Then χ(G) ≤ ∆ + 1. The chromatic
number of G is denoted .
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COLOURING

Definition
A graph G is called bipartite provided it is 2-colorable.

Theorem
A graph is bipartite if and only if it does not contain an odd cycle.
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PLANAR GRAPHS

Definition
A planar graph is a graph that has a drawing in the plane in which two edges do
not intersect (except at an endpoint if they both are incident with the same
vertex).
A graph that is not planar is called nonplanar.

A planar graph has crossing-free embedding in the plane.
A face is a portion of the plane cut off by the drawing. Imagine the graph drawn
on a physical piece of paper. If we cut along the curves representing the edges of
G, the paper falls apart into various pieces. Each of these pieces is called a face
(or region) of the embedding.

The drawing of the graph in the figure has six faces. There are five bounded faces
(faces with only finite area) and one unbounded face that surrounds the graph.
The degree of the face is called the number of edges that are on the goundary of
the face. 3. apríla 2025 33 / 60



PLANAR GRAPHS

Theorem
Euler’s Theorem
Let G be a connected planar graph with n vertices and m edges. Choose a
crossing-free embedding for G, and let f be the number of faces in the drawing.
Then

n −m + f = 2.

Corollary
1 Let G be a planar graph with at least 2 vertices. Then
|E (G)| ≤ 3 · |V (G)| − 6.

2 Let G be a planar graph with at least 2 vertices and G does not contain K3
as a subgraph. Then |E (G)| ≤ 2 · |V (G)| − 4.

3 Let G be a planar graph. Then G contains a vertex with degree at most five.
4 The graph K3,3 is nonplanar.
5 The graph K5 is nonplanar.
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PLANAR GRAPHS
If in the graph we remove an edge {u, v} and add a new vertex w together with
edges {u,w} and {w , v}, we called such an operation elementary subdivision. A
subdivision of G is formed from G by replacing edges with paths (we apply the
elementary subdivision operation several times). Graph and its subdivision are
called homeomorphic.
If a graph is planar, so are its subdivisions. And the converse of this statement is
also true: If a graph is nonplanar, then all of its subdivisions are also nonplanar.
Graphs G6 and G7

G6 G7

are homeomorphic because
G̃6 G̃7
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PLANAR GRAPHS

Theorem
Kuratowski’s Theorem
A graph is planar if and only if it does not contain a subdivision of K3,3 or K5 as a
subgraph.

Graph

v1

v2

v3 v6

a
v4

b

c v5

d

is nonplanar because contains subgraph
v1

v2

v3 v6

a
v4

b

c v5

which is subdivision of K3,3

v1

v2

v3

v6

a

v4

b
c

v5
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PLANAR GRAPHS

Kuratowski’s Theorem is a marvelous characterization of planarity.

If a graph is planar, I can convince you of this fact by presenting you with a
crossing-free drawing.

On the other hand, if a graph is nonplanar, I can convince you of this fact by
finging a subdivision of K3,3 or K5 as a subgraph of my graph.
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DIGRAPHS

Definition
A digraph (directed graph)

−→
G = (V ,E ) consists of set of vertices

V = {v1, v2, . . . , vn} and set of edges E, that is subset of the set
V × V − {(v1, v1), . . . , (vn, vn)}. If (vi , vj) is an edge, then the vertex vi is called
the initial vertex and the vertex vj is called the terminal vertex.

Definition
Let
−→
G = (V ,E ) be a digraph and let v ∈ V . The out-degree of v , denoted δ+(v),

is the number of edges for which vetrex v is the initial vertex. The in-degree of v ,
denoted δ−(v), is the number of edges for which vetrex v is the terminal vertex.
The vertex v is called a source if δ+(v) > 0 and δ−(v) = 0.
The vertex v is called a sink if δ+(v) = 0 and δ−(v) > 0.
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DIGRAPHS

Definition
A directed walk (or more simply, a walk) in a directed graph

−→
G is a sequence of

vertices v0, v1, . . . , vk and edges

(v0, v1), (v1, v2) . . . , (vk−1, vk)

such that (vi−1, vi ) is an edge of
−→
G for all i where 1 ≤ i < k.

A directed path (or path) in a directed graph is a walk where the vertices in the
walk are all different.
A directed cycle (or cycle) in a directed graph is a closed walk where all the
vertices vi are different for 1 ≤ i < k.

3. apríla 2025 39 / 60



DIGRAPHS

The notion of being connected is a little more complicated for a directed graph
than it is for an undirected graph. For example, should we consider the graph in
Figure to be connected? There is a path from node a to every other node so on
that basis, we might answer „Yes.“ But there is no path from nodes b, c, or d to
node a, and so on that basis, we might answer „No.“ For this reason, graph
theorists have come up with the notion of strong connectivity for directed graphs.

Definition
A directed graph

−→
G = (V ,E ) is said to be strongly connected if for every pair of

vertices u; v ∈ V ; , there is a directed path from u to v (and vice-versa) in
−→
G .

For example, the graph in Figure is not strongly connected since there is no
directed path from node b to node a. But if node a is removed, the resulting
graph would be strongly connected.

3. apríla 2025 40 / 60



DIGRAPHS

Definition
A directed graph

−→
G = (V ,E ) is said to be weakly connected (or, more simply,

connected) if the corresponding undirected graph/multigraph (where directed
edges (u, v) and/or (v , u) are replaced with a single undirected edge {u, v} is
connected. For example, the graph in Figure is weakly connected.
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DIGRAPHS

Definition
Let
−→
G 1 = (V1,E1) and

−→
G 2 = (V2,E2) be digraphs. We say that

−→
G 1 is isomorphic

to
−→
G 2 provided there is a bijection f : V1 → V2 such that for all u, v ∈ V1 we

have (u, v) ∈ E1 if and only (f (u), f (v)) ∈ E2. The function f is called an
isomorphism of

−→
G 1 to

−→
G 2.

3. apríla 2025 42 / 60



DIGRAPHS

Definition
A digraph is called acyclic if it does not contain a directed cycle.

Theorem
Let
−→
G = (V ,E ) be acyclic digraph. Then there is a vertex v ∈ V which is a

source.

Theorem
A digraph

−→
G = (V ,E ) is acyclic if and only if it is possible denoted the vertices

by numbers 1, 2, . . . , |V | such that for every edge (i , j) we have i < j .
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DIGRAPHS AND MATRICES

Definition
Suppose that

−→
G = (V ,E ) is a digraph where V = {v1, v2, . . . , vn}. The adjacency

matrix B of
−→
G is the n × n zero–one matrix with 1 as its (i , j)th entry when

(vi , vj) ∈ E, and 0 as its (i , j)th entry when (vi , vj) /∈ E. In another words, if its
adjacency matrix is B = (bij), then

bij =
{

1 if (vi , vj) ∈ E ,
0 otherwise.

The adjacency matrix of a digraph, in generally, is not symmetric.
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DIGRAPHS AND MATRICES

Definition
Let
−→
G = (V ,E ) be a graph. Suppose that v1, v2, . . . , vn are vertices and

e1, e2, . . . , em are the edges of
−→
G . Then the incidence matrix with respect to this

ordering of V and E is the n ×m matrix A = (aij) where

aij =

 1 if ej = (vi , vk) ∈ E ,
−1 if ej = (vk , vi ) ∈ E ,
0 otherwise.
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DIGRAPHS AND MATRICES

Example
Write the adjacency matrix B and the incidence matrix A for the digraph

−→
G

v1 v2 v3

v4 v5

h1

h2

h3

h4

h5

h6

h7

h8

Solution: Vertices and edges are denoted.
Incidence matrix:

h1 h2 h3 h4 h5 h6 h7 h8

A =

v1
v2
v3
v4
v5


−1 1 0 0 0 0 0 0
0 0 1 0 1 0 0 −1
0 0 0 0 −1 1 1 0
1 0 −1 −1 0 0 −1 0
0 −1 0 1 0 −1 0 1

 .
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DIGRAPHS AND MATRICES

Adjacency matrix:
v1 v2 v3 v4 v5

B =

v1
v2
v3
v4
v5


0 0 0 0 1
0 0 1 1 0
0 0 0 1 1
1 0 0 0 0
0 1 0 1 0

 .
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DIRECTED TREES

Definition
Directed tree

−→
T is a digraph which is tree which after cancelling the direction of

the edges is a tree.

Definition
Let
−→
G be a digraph which was created by the direction of the edges of the graph

G. Let K be a spanning tree of the graph G. Then the digraph
−→
K which was

created by the direction of the edges of the graph K, is called directed spanning
tree.
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DIRECTED TREES

Theorem
Let B be an adjacency matrix for a digraph

−→
G = (V ,E ), |V | = n. Assume a n× n

matrix D = (dij) where

dij =
{

0 if i 6= j ,
δ+(vi ) + δ−(vi ) if i = j .

The number of directed spanning trees of
−→
G , denoted p(

−→
T ), is determine by

formula
p(
−→
T ) = det(D − B − BT )i ,

where (D − B − BT )i is a matrix D − B − BT without i-th row and i-th column.
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GRAPH ALGORITHMS

Definition
A G = (V ,E ) be a graph (or

−→
G = (V ,E ) be a digraph) is called weighted graph

(digraph) if and only if each edge ei ∈ E has an associated some positive number
w(ei ) which is called weight (cost, length).
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GRAPH ALGORITHMS

Weight of the spanning tree is a sum of the weights of its edges.
Kruskal’s algorithm
Input: Connected weighted graph G = (V ,E ).
Output: Minimum spanning tree T .
Suppose the graph has n vertices. We will sort the weights of edges in
non-decreasing order. We start with the discrete factor T of the given graph. In
each iteration, we add the edge with the smallest weight to T so that no cycle is
created. If T has n− 1 edges, then we finish and T is the minimum spanning tree
of the graph G .

If the graph has m edges, algorithm complexity is O(m · log n).
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GRAPH ALGORITHMS

The Kruskal’s algorithm is a graph theory algorithm used to find the minimum
spanning tree for a given graph. The algorithm works by starting with all the
vertices in the graph and connecting them to form a tree. The tree is then
trimmed by removing the edges that are not part of the minimum spanning tree.
Applications of Kruskal’s algorithm
• Designing rail and road networks to connect several cities
• Placing microwave towers
• Designing irrigation channels
• Designing fiber-optic grids
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GRAPH ALGORITHMS

Distance in weighted graph
Positive number w({i , j}) is the weight of the edge {i , j}. The length of (u,v)
path in the weighted graph is the sum of the weights of the edges of this path.
The shortest path between two vertices is the path with the shortest length
between these vertices. Distance of two vertices vi a vj in the weighted
graph, denoted dw (vi , vj), is the length of the shortest path from vi to vj .

In the following Dijkstra’s algorithm, we initially have given two vertices, let’s
denote them a, z , whose distance we want to calculate. We assign L(vi ) labels to
vertices vi , which are temporary at first, subject to change, and later become
permanent. If the label L(vi ) is permanent for the vertex vi , then the value of
L(vi ) is the length of the shortest path from the vertex a to the vertex vi .
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GRAPH ALGORITHMS

Dijkstra’s algorithm
Input: Connected weighted graph G = (V ,H), vertices a, z .
Output: L(z) is the length of the shortest path from the vertex a to the vertex z .

1 Assume L(a) = 0. For all vertices x 6= a, let L(x) =∞.
2 If z /∈ V , then we finish and L(z) is the length of the shortest path from a to
z .

3 Let’s choose the vertex v ∈ V with the smallest value of L(v). The set
V = V − {v}.

4 We assign the label L(x) = min{L(x), L(v) + w({v , x}) to each vertex x ∈ V
that is adjacent to the vertex v . Jump to step 2.

Complexity algorithm is O(n2).
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GRAPH ALGORITHMS
Dijkstra’s algorithm
Dijkstra’s graph search algorithm finds the shortest path between two nodes in a
graph. It is an iterative algorithm that starts with the source node and works its
way to the destination node. For each new node discovered, Dijkstra’s algorithm
calculates the shortest path to the destination node using the currently known
distances. When traversing using Dijkstra’s algorithm, any node in the graph can
be considered the root node.
Applications of Dijkstra’s algorithm
• Dijkstra’s algorithm is used in network routing protocols to calculate the best

route between two nodes.
• It is used in algorithms for solving the shortest path problem, such as the A*

algorithm. The Bellman-Ford algorithm uses Dijkstra’s algorithm to find the
shortest path from a source node to all other nodes in a graph.

• Dijkstra’s algorithm is used in many artificial intelligence applications, such as
game playing and search engines.

• Maps - Finding the shortest and/or most affordable route for a car from one
city to another.

• Satellite navigation systems - to show drivers the fastest path they can drive
from one point in a city to the other.
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GRAPH ALGORITHMS

Distance in weighted digraph
Similar to weighted graphs, we also define the distance between two vertices in
weighted digraphs. We just have to consider the given orientation of the edges.
Let the positive number w((i , j)) be the weight of the edge (i , j). A weighted
digraph can be described by a cost matrix.

Definition
Let
−→
G = (V ,E ) be a digraph, where V = {v1, v2, · · · , vn}. Digraph cost matrix

is a n × n matrix W = (wij), where

wij =

 w((vi , vj)) ak (vi , vj) ∈ E ,
∞ ak (vi , vj) /∈ E ,
0 ak i = j .
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GRAPH ALGORITHMS

The length of directed path in a weighted digraph is the sum of the weights of the
edges of this directed path. The shortest directed path from vertex vi to vertex vj
is the directed path with the shortest length among all paths from vi to vj . The
distance between two vertices vi and vj in the weighted digraph, denoted by
−→
d w (vi , vj), is the length of the shortest directed path from vi to vj . If no such
path exists, then

−→
d w (vi , vj) =∞. It is obvious that

−→
d w (vi , vi ) = 0. To determine

the distances of two vertices in a weighted digraph, we can use the previous
Dijkstra’s algorithm, if we consider the direction of the edges.
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GRAPH ALGORITHMS

We want to find out the distances between all pairs of vertices, so we calculate
the distance matrix.

Definition
Let
−→
G = (V ,H) be a digraph on n vertices. Distance matrix for given digraph

−→
G is n × n matrix D = (dij), where dij =

−→
d w (vi , vj).

To calculate the distance matrix in the weighted digraph, we use Floyd’s algorithm.
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GRAPH ALGORITHMS

Floyd’s algorithm
Input: Weighted digraph with vertices v1, v2, . . . vn.
Output: Distance matrix D = (dij).

1 We put D(0) = W .
2 We create a matrix D(k) = (d (k)

ij ) such that
d (k)

ij = min{d (k−1)
ij , d (k−1)

ik + d (k−1)
kj }

3 If k = n, we finish and the matrix D(k) = D. If k < n, we put k = k + 1 and
jump to step 2.

Complexity algorithm is O(n3).

3. apríla 2025 59 / 60



GRAPH ALGORITHMS

The Floyd’s algorithm is a graph theory algorithm used to find the shortest path
between all pairs of vertices in a graph. The algorithm works by constructing a
table of shortest paths from each vertex to every other vertex in the graph. Like
the Dijkstra’s algorithm, it calculates the shortest path in a digraph. However,
unlike the algorithm that use only one source to compute the shortest distance,
the Floyd’s algorithm calculates the shortest distances for all pairs of vertices in a
digraph.
Applications of Floyd’s algorithm
• Computer science - Floyd’s can be used to find the best path between two

vertices in a graph.
• Networks - Is used to find the shortest path between two points in a network.
• Optimal routing - Finds the path with the maximum flow between two

vertices.
• Pathfinder networks - Can be used for fast computations of Pathfinder

networks.
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