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Preface

The textbook Mathematics 3 contains an overview of the theory, solved examples and
unsolved tasks for subject Mathematics 3 for bachelor’s degrees students at Applied Infor-
matics, Faculty of Electrical Engineering and Informatics, Technical University of Košice.
The textbook consists of six chapters. Each chapter is divided into sub-chapters in partic-
ular areas of Mathematics. At the end of each chapter are subsections Solved Examples,
Exercises and their results.

The areas of the mathematics optimization are represented in this textbook by the
theory, examples, and basic information from operational analysis and simplex method, as
this required course of study Applied Informatics.

This textbook is available on CD and on the web site DMTI FEEI TUKE (KMTI FEI
TU) and Moodle system, which is managed by the FEEI TUKE.

Košice, 31st of August 2014 Authors

5





Contents

Preface 5

Contents 8

List of abbreviations and symbols 9

List of Figures 11

List of Tables 14

1 Introduction to Linear Programming 15
1.1 Historical Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Mathematical Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Linear Programing Problem 19
2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Selected Types of Linear Programming Problems . . . . . . . . . . . . . . 22

2.2.1 The Activity Analysis Problem . . . . . . . . . . . . . . . . . . . . 22
2.2.2 The Diet Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 The Cutting Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 The Transportation Problem . . . . . . . . . . . . . . . . . . . . . . 24
2.2.5 The Assignment Problem . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Linear Programming Problem in R2 . . . . . . . . . . . . . . . . . . . . . . 26
2.4 The Introduction to Convex Analysis . . . . . . . . . . . . . . . . . . . . . 33
2.5 The Standard Form of Linear Programming Problem . . . . . . . . . . . . 35

2.5.1 Conversions of LPP Forms . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 The Basis Feasible Solution of Linear Programming Problems . . . . . . . 37
2.7 Solved Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.9 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Linear Programming Duality 57
3.1 The Dual to Linear Programming Problem . . . . . . . . . . . . . . . . . . 57
3.2 Primal-Dual Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7



CONTENTS 8

3.3 Solved Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Simplex Method 69
4.1 Simplex Method – Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Two-Phase Algorithm of Simplex Method . . . . . . . . . . . . . . . . . . . 71
4.3 Procedure Simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Solved Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Dual Simplex Method 87
5.1 Dual Simplex Method – Algorithm . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Procedure Dual Simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Solved Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Integer Linear Programing Problem 95
6.1 Formulation of the Integer Linear Programing Problem . . . . . . . . . . . 95
6.2 Integer Linear Programing Problem in R2 . . . . . . . . . . . . . . . . . . 96
6.3 Gomory’s Fractional Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4 Solved Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Register 114

Lexicon 120

Bibliography 121



List of Abbreviations and Symbols

MPP – mathematical programming problem

LPP – linear programming problem

aiaiai – i-th row of the matrix AAA

Aj – j-th column of the matrix AAA

F – set of feasible solutions of LPP

xxxopt – optimal solution of LPP

f opt(xxx) – value of the objective function at the optimal solution

conv(M) – convex hull of the set M

ex(M) – set of extreme points of the set M

B(i) – index of the matrix AAA column which represent i-th component of base B

BS – basis solution

P – primary linear programming problem

D – dual linear programming problem

FP – set of feasible solutions of primary linear programming problem

FD – set of feasible solutions of dual linear programming problem

ILPP – integer linear programming problem

xxxopt
r – optimal solution of relaxation of integer linear programming problem

BC – line segment BC

{a} – fractional part of a

bac – lower integer part of a

TP – transportation problem

9





List of Figures

2.1 Constraints (p1, p2, p3) and the set of feasible solutions F in R2. . . . . . . 27
2.2 The contour line of the objective function. . . . . . . . . . . . . . . . . . . 28
2.3 Optimum – the point at which the objective function has the maximum. . 28
2.4 The set of feasible solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Counter lines of objective functions and the optimal solution. . . . . . . . . 30
2.6 The feasible set, the counter line of the objective function and optimal so-

lutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 The feasible set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 Example of a convex set (a) and a nonconvex set (b) in R2. . . . . . . . . . 33
2.9 Intersections of pairs of convex sets in R2. . . . . . . . . . . . . . . . . . . 33
2.10 Convex sets and their sets of corner points. . . . . . . . . . . . . . . . . . . 34
2.11 Possible Cutting Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Constraints for dual LPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 The graphic solution of the dual. . . . . . . . . . . . . . . . . . . . . . . . 63

6.1 The graphical representation of the ILPP – example 6.1. . . . . . . . . . . 97
6.2 The graphical representation of the ILPP – example 6.2. . . . . . . . . . . 97
6.3 The graphical representation of the ILPP – example 6.3. . . . . . . . . . . 98
6.4 The graphical representation of the ILPP – example 6.4. . . . . . . . . . . 99
6.5 The graphical representation of the ILPP – example 6.5. . . . . . . . . . . 100
6.6 The graphical representation of the ILPP – example 6.6. . . . . . . . . . . 100
6.7 The graphical representation of the ILPP – example 6.7. . . . . . . . . . . 101
6.8 The graphical representation of the ILPP – example 6.8. . . . . . . . . . . 102
6.9 The graphical representation of the ILPP – example 6.9. . . . . . . . . . . 103

11





List of Tables

1.1 Optimization problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Table of requirements and capabilities. . . . . . . . . . . . . . . . . . . . . 17

2.1 Information about the feasible set and its cardinality. . . . . . . . . . . . . 32
2.2 Summary Table – the weights, capacities and profits. . . . . . . . . . . . . 39
2.3 Summary Table – capacities and profits . . . . . . . . . . . . . . . . . . . . 40
2.4 Summary Table – mixing problem . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 List of distances between cities. . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 The time data for the assignment problem. . . . . . . . . . . . . . . . . . . 44

3.1 Relations between primal (P) and dual (D) task of LPP. . . . . . . . . . . 59
3.2 Overview of the different options for solving a pair P – D. . . . . . . . . . 59

4.1 Simplex Method – Simplex Table . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Simplex method – Initial table . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Simplex method – First iteration . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Simplex method – Second iteration . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Simplex method – Third iteration . . . . . . . . . . . . . . . . . . . . . . . 75
4.6 Simplex method – Optimal table . . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Simplex method – The filled simplex table . . . . . . . . . . . . . . . . . . 76
4.8 Simplex method – Initial table . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.9 Simplex method – First iteration . . . . . . . . . . . . . . . . . . . . . . . 76
4.10 Simplex method – Optimal simplex table . . . . . . . . . . . . . . . . . . . 77
4.11 Simplex method – Filled in the simplex table . . . . . . . . . . . . . . . . . 77
4.12 Simplex method – Modified table . . . . . . . . . . . . . . . . . . . . . . . 78
4.13 Simplex method – Initial table . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.14 Simplex method – Filled in the simplex table . . . . . . . . . . . . . . . . . 79
4.15 Simplex method – Artificial LPP . . . . . . . . . . . . . . . . . . . . . . . 79
4.16 Simplex method – Artificial LPP . . . . . . . . . . . . . . . . . . . . . . . 80
4.17 Simplex method – Artificial LPP . . . . . . . . . . . . . . . . . . . . . . . 80
4.18 Simplex method – Artificial LPP . . . . . . . . . . . . . . . . . . . . . . . 80
4.19 Simplex method – Second phase . . . . . . . . . . . . . . . . . . . . . . . . 81
4.20 Simplex method – Second phase – Initial step . . . . . . . . . . . . . . . . 81

13



LIST OF TABLES 14

4.21 Simplex method – Initial table . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.22 Simplex method – Artificial task . . . . . . . . . . . . . . . . . . . . . . . . 82
4.23 Simplex method – Artificial task . . . . . . . . . . . . . . . . . . . . . . . . 83
4.24 Simplex method – Artificial task . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Determining the pivot in the primary and the dual simplex method algorithm. 88
5.2 Dual simplex method – First step. . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Dual simplex method – Second step. . . . . . . . . . . . . . . . . . . . . . 90
5.4 Dual simplex method – Third step. . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Dual simplex method – Fourth step. . . . . . . . . . . . . . . . . . . . . . . 90
5.6 Dual simplex method – Fifth step. . . . . . . . . . . . . . . . . . . . . . . . 91

6.1 Information about a relaxation of ILPP and ILPP. . . . . . . . . . . . . . . 104



Chapter 1

Introduction to Linear Programming

1.1 Historical Introduction
Linear programming is a relatively young mathematical discipline, dating from the in-
vention of the simplex method by G. B. Dantzig in 1947. Historically, development in
linear programming is driven by its applications in economics and management. Dantzig
initially developed the simplex method to solve U.S. Air Force planning problems, and
planning and scheduling problems still dominate the applications of linear programming.
One reason that linear programming is a relatively new field is that only the smallest linear
programming problems can be solved without a computer.

1.2 Mathematical Programming
Methods of mathematical programming are some of the frequently used methods to opti-
mize production and other decision-making processes. They allow to transform realistic
processes to mathematical models and then to solve these models by using the mathemat-
ical tools. So the real process is transformed into mathematical programming problem –
MPP.

Parts of the mathematical programming problem are:

1. objectives - determining of objectives is dependent on the process. They are the op-
timization (maximization or minimization) criteria. These can be, for example:

– profit maximization,
– maximization of efficiency equipment,
– maximization productivity,
– maximization the quantities of material,
– minimization of production costs,
– waste minimization,

15



CHAPTER 1. INTRODUCTION TO LINEAR PROGRAMMING 16

– minimization of kilometers and other.

2. Constraints - they refer to conditions and limitations so the process is working. It
may be one but also a number of conditions. For example:

– material resources,
– capacity of the production facilities,
– workforce capacity,
– limited lifetime of machines,
– financial resources,
– sales opportunities,
– suppliers capacity ,
– transport capacity
– requirements of customers,
– storage capacity and other.

Objectives and conditions can be expressed by using mathematical tools, which we call a
mathematical model.

Objectives are functions, which we are trying to minimize or maximize.

Constraints are given by equalities, inequalities or by system of equalities and inequali-
ties. They may also be linear or nonlinear equalities and inequalities.

Table 1.1: Optimization problem.

f1(x1, x2, . . . , xn)→ min(max)
objectives f2(x1, x2, . . . , xn)→ min(max)

(objective functions) . . .
fk(x1, x2, . . . , xn)→ min(max)

g1(x1, x2, . . . , xn) ≤≥= 0
main constraints g2(x1, x2, . . . , xn) ≤≥= 0

. . .
gm(x1, x2, . . . , xn) ≤≥= 0

The mathematical model of MPP is illustrated by the following example.
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Example 1.1. A carpenter makes 2 products A and B. Each piece of A can be sold for
a profit of 65 e and each piece of B for a profit of 48 e. The carpenter can afford to
spend up to 90 hours per week working and takes four hours to make A and nine hours
to make B. The final treatment of products takes two hours for A and one hour for B and
the carpenter can afford to spend up to 20 hours per week. Each piece of the product
occupies 1 m3 in storage and capacity of storage place is 12 m3. Formulate this problem
as a linear programming problem.
Solution:
We enter the relevant data in the following table:

Table 1.2: Table of requirements and capabilities.

product A product B capacities
working time 4 9 90

final treatment time 2 1 20
storace place 1 1 12

profit 65 48 –

The process can be expressed by the following mathematical model

f(x1, x2) = 65x1 + 48x2 → max

4x1 + 9x2 ≤ 90

2x1 + x2 ≤ 20

x1 + x2 ≤ 12

x1, x2 ≥ 0
√





Chapter 2

Linear Programing Problem

2.1 Basic Concepts
Definition 2.1. A function f(xxx) of several real variables xxx = (x1, x2, . . . , xn) is said to be
linear if it satisfies two conditions:

(1) f(xxx+ yyy) = f(xxx) + f(yyy) additivity,
(2) f(αxxx) = αf(xxx) proportionality,

where xxx, yyy ∈ Rn and α ∈ R.

Corollary 2.1. All linear functions are on the form

f(xxx) =
n∑

j=1
(cj · xj), where cj ∈ R, ∀j ∈ {1, 2, . . . , n}.

Definition 2.2. A linear programming problem is a problem of maximizing or minimizing
a linear objective function of n real variables

f(xxx) = c1 · x1 + c2 · x2 + · · ·+ cn · xn → min (max), (2.1)

whose values are restricted (or constrained) to satisfy relations each of which is of the type:

ai1 · x1 + ai2 · x2 + · · ·+ ain · xn ≤ bi, for i = 1, . . . , k − 1
ai1 · x1 + ai2 · x2 + · · ·+ ain · xn ≥ bi, for i = k, . . . , l − 1
ai1 · x1 + ai2 · x2 + · · ·+ ain · xn = bi, for i = l, . . . ,m

xi ≤ 0 ∀i ∈ N1

xi ≥ 0 ∀i ∈ N2

xi ∈ R ∀i ∈ N3 xi is unbounded variable, where
1 ≤ k ≤ l ≤ m,

N1 ∪N2 ∪N3 = {1, 2, . . . , n}

(2.2)

19



CHAPTER 2. LINEAR PROGRAMING PROBLEM 20

x1, x2, . . . , xn – variables,
c1, c2, . . . , cn – the objective function coefficients,
a11, a12, . . . , amn - the coefficients of constraints,
b1, b2, . . . , bm – the coefficients of right sides.

By using the Corollary 2.1 the LPP can be given by:

f(xxx) =
n∑

j=1
(cj · xj)→ min (max),

under conditions:
n∑

j=1
(aij · xj) ≤ bi, for i = 1, . . . , k − 1

n∑
j=1

(aij · xj) ≥ bi, for i = k, . . . , l − 1

n∑
j=1

(aij · xj) = bi, for i = l, . . . ,m

xj ≤ 0, ∀j ∈ N1

xj ≥ 0, ∀j ∈ N2

xj ∈ R, ∀j ∈ N3.

The simplified symbolic notation:

f(xxx) =
n∑

j=1
(cj · xj)→ min (max)

n∑
j=1

(aij · xj)


≤
=
≥

 bi i = 1, 2, . . . ,m

xj ≤≥ 0 j = 1, 2, . . . , n.

The vector notation:
f(xxx) = ccc> · xxx→ min (max)

m∑
i=1

(aiaiai · xxx)


≤
=
≥

bbb
xj ≤≥ 0, j = 1, 2, . . . , n , where
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xxx = (x1, x2, . . . , xn)>
ccc = (c1, c2, . . . , cn)>
aiaiai = (ai1, ai2, . . . , ain)
bbb = (b1, b2, . . . , bm)>.

The matrix notation:
f(xxx) = ccc> · xxx→ min (max)

AAA · xxx


≤
=
≥

bbb

xj ≤≥ 0, j = 1, 2, . . . , n,

where the matrix AAA ∈ Rm,n is the matrix of real numbers with m rows and n columns:

AAA =



a11 a12 . . . a1n

a21 a22 . . . a2n

... ... ...
am1 am2 . . . amn

 (2.3)

Remark 2.1 (Denote). i-th row of the matrix AAA by aiaiai and j-th column of the matrix AAA
by Aj.

Definition 2.3.

• A vector xxx ∈ Rn for the LPP is said to be feasible if it satisfies the corresponding
constraints.

• The set of all feasible vectors is called the constraint set F .

• A linear programming problem is said to be feasible if the constraint set is not empty;
otherwise it is said to be infeasible.

• A feasible vector xxx ∈ Rn, at which the objective function (2.1) achieves extremal
(maximum or minimum) value is called optimal xxxopt. This extremal value of feasible
function is denoted f opt(xxx).

• A feasible LP problem is said to be unbounded if the objective function can assume
arbitrarily large positive (resp. negative) values at feasible vectors; otherwise, it is
said to be bounded.
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2.2 Selected Types of Linear Programming Problems
The linear programming problems offer a large variety of applications in practice. The fol-
lowing structure describes only some of them and examples, which are provided to them,
illustrate very simplified procedures.

2.2.1 The Activity Analysis Problem

Linear programming problems arise naturally in production planning. There are n products
that a company may product, using the available supplies of m resources (labour, finance,
hours, steel, etc.). The company knows the amount of i−th resource which is needed to
produce a unit of j−th product. It is also known, what is the profit from the sale of a unit
quantity of each product and the available supply of resources are known too.

The task is to schedule production plan so that the profit will be maximum with respect
the capacity of the resources.

Mathematical model:

f(xxx) =
n∑

j=1
(cj · xj)→ max

n∑
j=1

(aij · xj) ≤ bi, i = 1, 2, . . . ,m

xj ≥ 0, j = 1, 2, . . . , n

that

n - number of products,

m - number of resources,

xj - amount of produced units of the j−th product,

cj - price/profit from a unit quantity of j−th product,

aij - amount of i-th resource used in production of a unit of j−th product,

bi - available supply of i-th resource.

See examples 2.5 and 2.6.
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2.2.2 The Diet Problem

There are numbers of different types of food, F1, . . . , Fn, that supply varying quantities of
the nutrients, N1, . . . , Nm, that are essential to be a good diet. Let us know the minimum
(maximum) daily requirement of i−th nutrient, the price per unit of j−th food and the
amount of i−th nutrient contained in one unit of j−th food. The problem is to supply the
required nutrients at minimum cost.

The general mathematical formulation of the problem can be written as follows:

f(xxx) =
n∑

j=1
(cj · xj)→ min

n∑
j=1

(aij · xj) ≥ bi, i = 1, 2, . . . ,m

xj ≥ 0, j = 1, 2, . . . , n

for

m - number of the nutrients,

n - number of different types of food,

xj - amount of j−th food used in the diet,

cj - price per unit of j−th food,

aij - amount of i−th nutrient contained in one unit of j−th food,

bi - minimum (maximum) amount of i−th nutrient which is required.

See example 2.7.

2.2.3 The Cutting Plans

We have a certain amount of bars of a given length. We need to cut fixed quantities
of a required shorter lengths of them. The target is to establish such a cutting plan –
a way in which the bars are to be cut (setting of cutting blades) - to ensure the required
amount of bars with required length and waste to a minimum. Waste should be minimized.

The mathematical formulation of the problem can be written as follows:
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f(xxx) =
n∑

j=1
(cj · xj)→ min

n∑
j=1

(aij · xj) ≥ bi, i = 1, 2, . . . ,m

xj ≥ 0, j = 1, 2, . . . , n

for

n - number of different ways of cutting bars (the number of setting options for cutting
blades),

m - number of different lengths of bars, we want to cut,

xj - number of pieces of original bars which are cut by j-th way,

cj - waste arising from cutting one bar by j-th way,

aij - number of bars with i-th length cut in j-cutting plan,

bi - required number of bars of i-th length.

See example 2.8.

2.2.4 The Transportation Problem
There are n providers (companies, contractors, ports,. . . ) that supply a certain commodity
and m customers (consumers, markets, clients,. . . ) to which this commodity is taken.
Each provider has a certain amount of commodity - capacity and each customer has a
specific requirement for the quantity of commodity. The cost of transporting a unit of the
commodity are known for each pair of provider - customer. The task is to establish a plan
of transportation that costs of which will be as small as possible. (We assume a balanced
system, i. e. requirements of customers will be the same as the capacity of providers.)

The general mathematical formulation of the problem can be written as follows:

f(xxx) =
m∑

i=1

n∑
j=1

(cij · xij)→ min

n∑
j=1

xij = ai, i = 1, 2, . . . ,m

m∑
i=1

xij = bj, j = 1, 2, . . . , n

xij ≥ 0, pre i = 1, 2, . . . ,m; j = 1, 2, . . . , n

that
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n - number of providers,

m - number of customers,

xij - number of units of commodity to be transported from the i-th provider to the j-th
customer,

cij - cost of transporting of the commodity from the i-th provider to the j-th customer,

ai - capacity of the i-th provider,

bj - requirement of the j-th customer.

The balancing condition:
m∑

i=1
ai =

n∑
j=1

bj

See example 2.9.

2.2.5 The Assignment Problem

The assignment problem is one of the special cases of transportation problems. The goal of
the assignment problem is to minimize the cost or time of completing a number of sources
by a number of destinations. An important characteristic of the assignment problem is the
one in which the number of sources is equal to the number of destinations.

We have n sources (people, machines, laborers,. . . ) and n destinations (jobs, places,
tasks,. . . ) to be assigned to n sources. No source can either be idle or be assigned to
more than one destination. Every pair of "source – destination" has a rating expressed by
the coefficient cij. This rating may be cost, satisfaction, penalty involved or time taken
to finish the job. Thus, the assignment problem is to find such "source - destination"
combinations that optimize the sum of ratings among all. Variables will state whether the
source is assigned to a given destination or not.
Thus:

xij =

 1, if the i-th source is assigned to the j-th destination,
0, if the i-th source is not assigned to the j-th destination.

Since the assignment problem is one of the special cases or modification of the transporta-
tion problem, the general mathematical formulation of the assignment problem is similar
to the mathematical model of the transportation problem:
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f(xxx) =
m∑

i=1

n∑
j=1

(cij · xij)→ max

n∑
j=1

xij = 1, i = 1, 2, . . . , n

n∑
i=1

xij = 1, j = 1, 2, . . . , n

xij ∈ {0, 1}, for i, j = 1, 2, . . . , n

that
n – number of sources and also the number of destinations,

xij – variable that indicates whether the i-th source is assigned to the j-th destination or
not,

cij – coefficient, which expresses rating of the pair "i-th source - j-th destination".
See example 2.10.

2.3 Linear Programming Problem in R2

The general mathematical formulation of the linear problem with two decision variables
can be written as following:

f(xxx) = c1 · x1 + c2 · x2 → min (max)
ai1 · x1 + ai2 · x2 ≤ bi, for i = 1, . . . , k − 1
ai1 · x1 + ai2 · x2 ≥ bi, for i = k, . . . , l − 1
ai1 · x1 + ai2 · x2 = bi, for i = l, . . . ,m

x1, x2 ≤≥ 0,
1 ≤ k ≤ l ≤ m

Since all constraints are given by linear equations or inequalities, so they can be illustrated
by lines or half-planes in the plane. The set of feasible solutions F will be the intersection
of these lines and half-planes.
Example 2.1. Let the linear programming problem be given by the following:

f(xxx) = 66x1 + 48x2 → max
4x1 + 9x2 ≤ 90 . . . it corresponds to plain p1

2x1 + x2 ≤ 20 . . . it corresponds to plain p2

x1 + x2 ≤ 12 . . . it corresponds to plain p3

x1, x2 ≥ 0
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Draw the set of feasible solutions and the optimal solution of the LPP graphically.
Solution:
Because all constraints are in the inequality form, we can draw them as half-planes p1, p2
a p3. We obtain the set of feasible solutions as their intersection and also the intersection
of half-planes expressing nonnegativity conditions (figure 2.1).

p1 p2

p3p3 F

Figure 2.1: Constraints (p1, p2, p3) and the set of feasible solutions F in R2.

We draw the contour line of the objective function – by the following way: Let f(xxx) = 0, it
means in our example, to draw the line p: 66x1 +48x2 = 0 and to denote in which direction
the value of the objective function increases (figure 2.2).
We are looking for the furthest point of the set of feasible solutions F in the denoted
direction (figure 2.2). It’s the intersection of lines represented by the equations:

2x1 + x2 = 20; x1 + x2 = 12

We gain the optimal solution coordinates by resolution of this equation system and we
gain the optimal value of the objective function as the value of the objective function for
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max

Figure 2.2: The contour line of the objective function.

the optimal solution:

xxxopt = (8, 4)>

f opt(xxxopt) = 720.

Figure 2.3: Optimum – the point at which the objective function has the maximum.

√
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Example 2.2. Let constraints of LPP be given by the following:
2x1 + x2 ≥ 6
x1 + 2x2 ≥ 6
4x1 − x2 ≤ 15

x1 ≥ 0

Draw the set of feasible solutions and the optimal solution of the LPP graphically and find
the optimal solution if the objective function is:
a) f1(xxx) = x1 + 2x2 → max,

b) f2(xxx) = −x1 + 3x2 → min.

Solution:
By the similar way as in the previous example 2.1, we draw the set of feasible solutions F
as the intersection of half-planes. We can see on the figure 2.4, the set of feasible solutions
is unbounded.

Figure 2.4: The set of feasible solutions.

Counter lines of objective functions f1(xxx) and f2(xxx) are drawn on figure 2.5. We can not
find the optimum of f1(xxx) because the set is unbounded in the direction of maximization
of the objective function, thus, the LPP is feasible, but unbounded.
Though, the objective function f2(xxx) has the optimal solution on the same feasible set. We
compute the optimal solution and objective function value in this solution analogously as
in the example 2.1:

xxxopt = (4, 1)>

f opt
2 (xxxopt) = −1.
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max

min

Figure 2.5: Counter lines of objective functions and the optimal solution.

√

Example 2.3. Let the linear programming problem be given as follows. Draw the feasible
set and the optimal solution of the LPP graphically.

f(xxx) = −6x1 + x2 → min
6x1 − x2 ≤ 24

7x1 + 2x2 ≥ 14
4x1 + 9x2 ≤ 45

x1, x2 ≥ 0

Solution:
On the figure 2.6, there are drawn the feasible set and the counter line of the objective
function as line −6x1 + x2 = 0. We are approaching to the optimal solution by moving to
the right. Since the boundary of the feasible set is given by condition 6x1 − x2 ≤ 24, this
boundary is parallel to the contour line. The optimal solutions are all the points of the line
segment BC and the number of optimal solutions is infinite. The value of the objective
function for any of them is the same. √
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min

Figure 2.6: The feasible set, the counter line of the objective function and optimal solutions.

Example 2.4. A linear programming problem is given bellow. Draw the feasible set and
the optimal solution of the LPP graphically.

f(xxx) = x1 + x2 → min
x1 + x2 ≤ 1

2x1 + x2 ≥ 4
x1, x2 ≥ 0

Solution:
Nonnegativity conditions should be valid for both variables. This means that the feasible
set contain only the points from the first quadrant. Because the two half-planes for the
constraints have no intersection in the first quadrant (see fig. 2.7), the feasible set is empty
and LPP don’t have an optimal solution.

√
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Figure 2.7: The feasible set.

Observation:
We might have noticed in the previous examples that the feasible set may be empty, non-
empty bounded and non-empty unbounded. The number of optimal solutions could be
zero, one, and infinity. The next table clearly shows, which options are possible (

√
) or

aren’t possible (–) for the pair “feasible set – number of optimal solutions”.

Table 2.1: Information about the feasible set and its cardinality.

number of feasible set
optimal empty non-empty non-empty
solutions bounded unbounded

zero
√

–
√

one –
√ √

infinity –
√ √
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2.4 The Introduction to Convex Analysis
Definition 2.4. A non-empty set M ∈ Rn is called a convex set, if:

(∀xxx,yyy ∈M)(∀λ ∈ 〈0; 1〉) : (λxxx+ (1− λ)yyy ∈M).

Let a set M be a subset of R2. If for every pair of points within the set M , every point
on the straight line segment that joins the pair of points is also within the set M , then the
set M is convex.

(a) (b)

Figure 2.8: Example of a convex set (a) and a nonconvex set (b) in R2.

Theorem 2.1. The intersection of convex sets is a convex set.

Figure 2.9: Intersections of pairs of convex sets in R2.
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Definition 2.5. For any collection of points x1x1x1,x2x2x2, . . . ,xkxkxk ∈ Rn and for any nonnegative
numbers λ1, λ2, . . . , λk such that

λ1 + λ2 + · · ·+ λk = 1,

the point xxx = λ1x1x1x1 + λ2x2x2x2 + · · · + λkxkxkxk ∈ Rn is called a convex combination of points
x1x1x1,x2x2x2, . . . ,xkxkxk.

Theorem 2.2. Consider a set M ∈ Rn, M 6= ∅. A set M is a convex set iff any convex
combination of any points of M belongs to M , too.

Definition 2.6. Let set M ⊆ Rn. A set conv(M) with the characteristic properties
(1) M ⊆ conv(M),
(2) conv(M) is convex set,
(3) If there exists covnex set M1, such that M ⊆M1, then conv(M) ⊆M1,

is called a convex hull of the set M .
Consequently, the conv(M) is the smallest convex set such that M ⊆ conv(M).

Definition 2.7. Let M be a convex set. A point xxx ∈M such that:
if xxx = λyyy + (1− λ)zzz for any yyy,zzz ∈M and λ ∈ (0; 1), then xxx = yyy = zzz.

is called corner point of M .

Remark 2.2. There are used the denotation "boundary point, extreme point" for a corner
point in literature.

Definition 2.8. A corner point of a set M is a point that can not be expressed as a non-
trivial convex combination of points fromM . A set of corner points ofM is called ex(M).

M1
M2

M3

ex(M )1
ex(M )3ex(M )2

Figure 2.10: Convex sets and their sets of corner points.
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Theorem 2.3. Every bounded, closed, convex and non-empty set contains at least one
corner point.

Theorem 2.4. Let M ⊆ Rn, M 6= ∅ be bounded, closed and a convex set. Then every
xxx ∈M can be expressed as a convex combination of corner points of the set M .

Definition 2.9. A closed convex set is called polyhedral set if it has a finite number of
corner points.

Only the set M1 is polyhedral in the picture 2.10.

Theorem 2.5. The feasible set F of any LPP is a convex set.

Theorem 2.6. The feasible set F of any LPP is polyhedral.

Theorem 2.7. The set of optimal solutions of any LPP is convex.

Theorem 2.8. Let us have a bounded and nonempty set F of feasible solutions of LPP.
Then:

(1) there exists min{ccc>. xxx : xxx ∈ F} = f ∗

(2) there exists a corner point x0x0x0 of set F such that ccc>. x0x0x0 = f ∗.

Theorem 2.9 (The main theorem of LPP). There occurs exactly one of the following
options for each minimization linear programming problem:

- LPP is infeasible, i.e., F = ∅.
- LPP is feasible but unbounded, i.e., F 6= ∅ and objective function
f(xxx) = ccc> · xxx is lower unbounded on F .

- LPP has an optimal solution in at least one of the corner points of the feasible set.

2.5 The Standard Form of Linear Programming Prob-
lem

Definition 2.10. We say that a LPP is in canonical form if it is in the form:

f(xxx) =
n∑

j=1
(cj · xj)→ min

n∑
j=1

(aij · xj) ≤ bi, for i = 1, . . . ,m

xj ≥ 0, for j = 1, 2, . . . , n.

(2.4)
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Definition 2.11. We say that a LPP with n variables and m constraints is in standard
form if it is in the form:

f(xxx) =
n∑

j=1
(cj · xj)→ min

n∑
j=1

(aij · xj) = bi, for i = 1, . . . ,m

xj ≥ 0, for j = 1, 2, . . . , n.

(2.5)

Remark 2.3. A matrix representation of a standard form of a LPP is:

f(xxx) = ccc> · xxx→ min
AAA · xxx = bbb

xj ≥ 0, for j = 1, 2, . . . , n.
(2.6)

Theorem 2.10. A general, a canonical and a standard form of linear programming prob-
lems are equivalent to each other.

Thus, each LPP in general form can be transformed into a canonical or a standard form
and vice versa, while the optimal solution does not change.

2.5.1 Conversions of LPP Forms
We use some fundamental transformations to convert linear programming problems from
any form into other form:

1. The changing of maximization LPP to minimization (or vice versa) is realized by
multiplying of the objective function by −1:

f(xxx)→ max / · (−1)
−f(xxx)→ min

(2.7)

2. The conversion of constraint in inequality form “≤” to constraint in inequality form
“≥” or vice versa is realized by multiplying the constraint by −1:

n∑
j=1

(aij · xj) ≥ bi / · (−1)

n∑
j=1

(−aij · xj) ≤ −bi

(2.8)
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3. The conversion of a constraint in an inequality form to a constraint in an equality
form is realized by adding a nonnegative slack variables:

n∑
j=1

(aij · xj) ≥ bi →
n∑

j=1
(aij · xj)− si = bi; si ≥ 0

n∑
j=1

(aij · xj) ≤ bi →
n∑

j=1
(aij · xj) + si = bi; si ≥ 0

(2.9)

4. The conversion of a constraint in an inequality form to a constraint in an equality
form is realized by substitution the equation with two inequalities according to the
principle of dichotomy:

n∑
j=1

(aij · xj) = bi →
∑n

j=1(aij · xj) ≤ bi∑n
j=1(aij · xj) ≥ bi

(2.10)

5. The substitution of an infinite variable by a difference of two nonnegative variables:

xj is unbounded →
xj = x+

j − x−j
x+

j ≥ 0; x−j ≥ 0
(2.11)

and:
if xj = 0, then x+

j = 0 ∧ x−j = 0,
if xj > 0, then x+

j = xj ∧ x−j = 0,
if xj < 0, then x+

j = 0 ∧ x−j = −xj.

See example 2.11.

2.6 The Basis Feasible Solution of Linear Program-
ming Problems

Let AAA ∈ Rm,n be a matrix such that h(AAA) = m and m ≤ n.1 Considering properties of
matrices, rows of AAA are linearly independent iff there exist m linearly independent columns
in AAA.

Definition 2.12. The set, which is created by m linearly independent columns of AAA is
called a base of the matrix AAA and it is denoted B. The matrix, which is created by columns
of the base B, is denoted BBB.
Denotation: The base B is created by m linearly independent columns of the matrix AAA, it
will be denotated B = {AB(1), AB(2), . . . , AB(m)}. So, AB(i) denotes a column of AAA, which
is i-th element of the base B. B(i) denotes the index of the column that is i-th element of

1h(AAA) denotes the rank of the matrix AAA
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the base B.
Clearly, the square matrix BBB is regular, thus there exists its inverse matrix BBB−1. See
example 2.12.

Let AAA ∈ Rm,n be a matrix with m linearly independent rows and n columns. A base
of this matrix has to be m ×m. Hence, the maximum number of bases of AAA is

(
n
m

)
. See

example 2.13.
Remark 2.4. Let B = {AB(1), AB(2), . . . , AB(m)} be a base of the matrix AAA, then every
column Aj; j = 1, 2, . . . , n of the matrix AAA can be expressed as a linear combination of
basis columns:

Aj =
m∑

i=1
(xij · AB(i)),

and values xij are called coordinates of the column Aj in the base B.
See example 2.14.

Definition 2.13. The solution xxxB = (x1, x2, . . . , xn)> of system AAA · xxx = bbb such that:

xj =

 0; if AAAj /∈ B,
particular element (coordinate) of the solution of BBB · xxxB = bbb; if AAAj ∈ B.

is called the basis solution (BS) of the given system for base B.
It implies:

m∑
i=1

(xB(i) · AB(i)) = bbb.

See example 2.15.
Definition 2.14. A basis solution xxx = (x1, x2, . . . , xn)> is called a basis feasible solution
(BFS), if xj ≥ 0, ∀j ∈ {1, 2, . . . , n}.
Definition 2.15. Let AAA ·xxx = bbb be a system such that AAA ∈ Rm,n is a matrix with m linearly
independent columns. A basis solution with more than n − m zero elements is called a
degenerated solution.

See example 2.16.
Theorem 2.11. If two different bases correspond to the same basis solution xxx, then this
solution xxx is degenerated.

We can see it in the previous example. The solution xxxB1 = xxxB2 = (2, 0, 0, 0)> is
degenerated and it corresponds to two bases B1 and B2. Similarly, the solution xxxB3 =
xxxB5 = (0, 0, 1, 0)> is also degenerated and it corresponds to two bases B3 and B5.
Theorem 2.12. The LPP in standard form (2.5) with matrixAAA ∈ Rm,n has a basis feasible
solution iff F 6= ∅ and h(AAA) = m.
Theorem 2.13. If columns A1, A2, . . . , Ak of AAA are linearly independent and the solution
xxx = (x1, x2, . . . , xk, 0, . . . , 0, 0)T ∈ F , then xxx ∈ ex(F ).
Theorem 2.14. If xxx ∈ ex(F ), then the set {Aj, xj ≥ 0} of matrix AAA columns is linearly
independent set.
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2.7 Solved Examples
Example 2.5. Iron foundry produces three different alloys (Z1, Z2, Z3) for the aerospace
industry, which arise by mixing four different metals (K1, K2, K3, K4) in precise propor-
tions. We need 0, 6 kg of metal K1 and 0, 4 kg of metal K2 to produce one kilogram of
alloy Z1. One kilogram of alloy Z2 consists of 0, 5 kg of metal K2 and 0, 5 kg of metal K4.
One kilogram of alloy Z3 consists of 0, 3 kg of metal K3 and 0, 7 kg of metal K4. Foundry
has 5 kg of metal K1, 6 kg of metal K2, 7 kg of metal K3 and 3 kg of metal K4. Profit
from the sale of one kilogram of alloy Z1, Z2 a Z3 is 50 e, 40 e a 60 e. What production
plan should be used to maximize its profits?
Solution:
We write the available data for the production of different types of alloys to a summary
table :

Table 2.2: Summary Table – the weights, capacities and profits.

alloy\metal K1 (kg) K2 (kg) K3 (kg) K4 (kg) profit (e)
Z1 (1 kg) 0,6 0,4 0 0 50
Z2 (1 kg) 0 0,5 0 0,5 40
Z3 (1 kg) 0 0 0,3 0,7 60

capacity (kg) 5 6 7 3

We write a mathematical model of the task using mathematical tools. Quantities of alloys
which have to be produced by foundry are unknown, therefore it is decision variables of
the objective function. Denote them x1, x2 and x3. The objective function of this LPP is:

50x1 + 40x2 + 60x3 → max .

Each alloy has a fixed ratio of metals. We also know that the amount of metals that is
available is not unlimited, which means that we must not exceed the specified capacity. So
we can write constrains in the inequalities form for each metal. For example K2 is used to
produce alloys Z1 a Z2. We need 0, 4 kg of it to produce one kilogram of Z1 and 0, 5 kg of
K2 to produce one kilogram of Z2. We have 6 kg of K2. The constrain for K2 is:

0, 4x1 + 0, 5x2 ≤ 6

The nonnegativity constrains will be also included for each variable, because to consider
the production of negative amount of alloys does not make sense.

x1, x2, x3 ≥ 0
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The whole mathematical model of the LPP is as follows:

50x1 + 40x2 + 60x3 → max
0, 6x1 ≤ 5

0, 4x1 + 0, 5x2 ≤ 6
0, 3x3 ≤ 7

0, 5x2 + 0, 7x3 ≤ 3
x1, x2, x3 ≥ 0

√

Example 2.6. A shipyard produces three types of ships: L100, L80 and L40. The ship
L100 will earn 12 millions e for shipyard, the construction of this ship takes 6 months and
it is able to transport 100 containers. The ship L80 will earn 10 millions e for the shipyard,
the construction of this ship takes 4 months and it is able to transport 80 containers. The
last type of the ship - L40 will earn 8 millions e for the shipyard, the construction of this
ship takes 3 months and it is able to transport 40 containers. According to market research,
the shipyard knows the fact it is possible to sell ships which are able to transport at most
320 containers, furthermore ships L80 are enough atypical, and therefore the shipyard has
not sold more than 4, yet. Suggest a production plan for the next 20 months according to
all the requirements and to get a maximum profit.
Solution:
The input data can be clearly written into the following table:

Table 2.3: Summary Table – capacities and profits

ships time of construction transport capacity profit
[month] [pc] [mil.e]

L100 6 100 12
L80(≤ 4) 4 80 10
L40 3 40 8

capacity 20 320

Decision variables in this LPP will be the numbers of ships produced by each type L100,
L80 and L40, we denote them as x1, x2 a x3. The constrains are three, the first will be
related to the time of construction, the second is related to the amount of containers and
the third constrain will express the fact, that a limit for ships L80 is no more than 4 pieces.
All three variables must be non-negative, moreover, the numbers of produced ships must
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be integers. Therefore, in this case, the integer condition will be added for all the decision
variables:

x1, x2, x3 ∈ Z

The mathematical model of the LPP is as follows:

12x1 + 10x2 + 8x3 → max
6x1 + 4x2 + 3x3 ≤ 20

100x1 + 80x2 + 40x3 ≤ 320
x2 ≤ 4

x1, x2, x3 ≥ 0
x1, x2, x3 ∈ Z

Such a problem is called the integer linear programming problem and denoted as ILPP.
√

Example 2.7. A farmer keeps cattle on the farm. He has to buy the necessary amount of
three offered semiproducts P1, P2, P3 for its fattening. He finally mixed them and prepare a
final dose of compound. This should include at least 5 kg of proteins, 7 kg of carbohydrates
and 3, 5 kg of fat. There are 380 g of proteins, 240 g of carbohydrates and 200 g of fat in
one kilogram of P1. One kilogram of P2 contains 180 g of proteins, 320 g of carbohydrates
and 150 g of fat and one kilogram of P3 contains 110 g of proteins, 220 g of carbohydrates,
and 400 g of fat. Prices of semiproducts P1, P2 and P3 per kilo are 4,30 e, 3,20 e and
3,70 e, respectively. The target is what quantities of each semiproducts is necessary to
mix in order to reach a mixture with the required parameters while costs is minimal.
Solution:
We write data about the composition and prices of semiproducts into the table and we pay
attention to the consistency of physical quantities:

Table 2.4: Summary Table – mixing problem

nutrient\semiproduct P1 (kg) P2 (kg) P3 (kg) required amount (g)
proteins (g) 380 180 110 5000

carbohydrates (g) 240 320 220 7000
fat (g) 200 150 400 3500

price (e) 4,30 3,20 3,70

By a similar way as in the previous examples we write the mathematical model of the
problem. The objective function is a function of prices of semiproducts and each constraint
(inequality) sets down the amount of proteins, carbohydrates and fat as they are entered
in the table.
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4,3x1 + 3,2x2 + 3,7x3 → min
380x1 + 180x2 + 110x3 ≥ 5000
240x1 + 320x2 + 220x3 ≥ 7000
200x1 + 150x2 + 400x3 ≥ 3500

x1, x2, x3 ≥ 0
√

Example 2.8. We have 18 bar pieces each with the length of 9 meters. We need to cut
at least 8 bar pieces with the length of 5 meters, at least 14 bar pieces with the length of
4 meters and 20 bar pieces with the length of 3 meters. Suggest an optimal solution by
minimizing the waste.
Solution:
Nine-meter bar can be cut to the required lengths in five ways:

5 m

5 m

4 m

4 m 4 m

4 m 3 m

3 m 3 m 3 m

1 m

1 m

2 m

R
5

R
1

R
2

R
3

R
4

3 m

Figure 2.11: Possible Cutting Plans

We obtained a waste 1 meter by cuttings R2 and R3, the waste 2 meter by cuttings R4
and no waste arises in cutting plan R5. Thus, the number of variables is five and we
will minimize the waste function. Constrains will be determined as the number of units
required for any required length. The last condition considers the number of available bars.
Of course, all variables must satisfy nonnegativity and integer conditions.

x2 + x3 + 2x4 → min
x1 + x2 ≥ 8

x1 + 2x3 + x4 ≥ 14
x2 + x4 + 3x5 ≥ 20

x1 + x2 + x3 + x4 + x5 ≤ 18
x1, x2, x3, x4, x5 ≥ 0
x1, x2, x3, x4, x5 ∈ Z

√
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Example 2.9. A chain of hypermarkets has its central stores in KE, BA, and LM. These
central stores dispose of the amounts 40, 40 and 20 units of the same item. The individual
hypermarkets need these amounts of this item: TN – 25, ZA – 10, RV – 20, BB – 30, PP –
15. Transport costs of 1 unit of this item from central stores into individual hypermarkets
are listed in the following table. Design a supply with this item in order to minimize the
transport costs.

Table 2.5: List of distances between cities.

provider\customer TN ZA RV BB PP
KE 55 60 30 50 40
BA 35 30 100 45 60
LM 40 30 95 35 30

Solution:
In this example we have five customers, so n = 5 and three providers, so m = 3. We
will minimize the objective function (cost function), where the variable xij specifies the
amount of units of the commodity to be transported from the i-th central store to the j-th
hypermarket. Therefore, there are m · n = 3 · 5 = 15 variables. Objective function can be
written as follows:

55x11 + 60x12 + 30x13 + 50x14 + 40x15 + 35x21 + 30x22 + 100x23+
+45x24 + 60x25 + 40x31 + 30x32 + 95x33 + 35x34 + 30x35 → min

We have the following constraints from the customer’s requirements:

x11 + x12 + x13 + x14 + x15 = 40
x21 + x22 + x23 + x24 + x25 = 40

x31 + x32 + x33 + x34 + x35 = 20

We have the other following constraints from the provider’s capacities:

x11 +x21 +x31 = 25
x12 +x22 +x32 = 10

x13 +x23 +x33 = 20
x14 +x24 +x34 = 30

x15 +x25 +x35 = 15
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It is evident that we cannot transport negative quantities of commodity, so the nonnega-
tivity conditions must also be satisfied.

xij ≥ 0 for i = 1, 2, 3; j = 1, 2, 3, 4, 5
Because the equality

3∑
i=1

ai =
5∑

j=1
bj = 100

is valid, the transportation problem is balanced.
√

Example 2.10. A taxi service has 3 taxis (T1, T2, T3) located at different places basis and
they are available for assignment to 3 clients (C1, C2, C3). Any taxi can be assigned to any
client. The required time to move every taxi for eny client is given by the table below (in
minutes). The taxi service wants to minimize the total time needed to transfer all three
taxis to clients.

Table 2.6: The time data for the assignment problem.

taxi\client C1 C2 C3

T1 13 15 20
T2 14 10 17
T3 12 15 12

Solution:
The task has nine variables, because n = 3. In a similar way as in the example 2.9, we write
the objective function and constraints for taxis and clients. Only nonnegativity conditions
are changed to conditions xij ∈ {0, 1}.

13x11 + 15x12 + 20x13 + 14x21 + 10x22 + 17x23 + 12x31 + 15x32 + 12x33 → min

x11+ x12+ x13 = 1
x21+ x22+ x23 = 1

x31+ x32+ x33 = 1
x11+ x21+ x31 = 1

x12+ x22+ x32 = 1
x13+ x23+ x33 = 1
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xij ∈ {0, 1} for i, j = 1, 2, . . . , n
√

Example 2.11. Transform the given LPP to a canonical and standard form:

x1 − x2 → max
3x1 − 5x2 ≤ 8
−2x1 + x2 ≥ 4

x1 + x2 = 6
x1 ≥ 0

Solution:
The objective function have to be minimization, so we use fundamental transformation
(2.7):

−x1 + x2 → min

The variable x2 is unbounded. We substitute it by using transformation (2.11):

x2 = x+
2 − x−2 ; x+

2 ≥ 0; x−2 ≥ 0

and we obtain:

−x1 + x+
2 − x−2 → min

3x1 − 5x+
2 + 5x−2 ≤ 8

−2x1 + x+
2 − x−2 ≥ 4

x1 + x+
2 − x−2 = 6

x1, x
+
2 , x

−
2 ≥ 0

(2.12)

We need all constraints in inequality form “≥” for canonical form. We multiply the first
constraint by −1 and we use the transformation (2.10) for the third constraint and then
we multiply obtained constraint by −1. The canonical form is:

−x1 + x+
2 − x−2 → min

−3x1 + 5x+
2 − 5x−2 ≥ −8

−2x1 + x+
2 − x−2 ≥ 4

x1 + x+
2 − x−2 ≥ 6

−x1 − x+
2 + x−2 ≥ −6

x1, x
+
2 , x

−
2 ≥ 0

We use (2.12) to make the standard form. We add slack variables into 1. and 2. constraint
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with using (2.9). The standard form of LPP is:

−x1 + x+
2 − x−2 → min

3x1 − 5x+
2 + 5x−2 + s1 = 8

−2x1 + x+
2 − x−2 − s1 = 4
x1 + x+

2 − x−2 = 6
x1, x

+
2 , x

−
2 , s1, s2 ≥ 0

√

Example 2.12. Let’s have given the following matrix AAA. We want to choose its base.

AAA =


2 1 4 3 2
3 1 5 4 2
1 0 2 1 1


Solution:
We choose columns A1, A2 a A5 from matrix AAA. They are linearly independent, so they
create a base say B1. Similarly, columns A2, A3 a A4 also create a base say B2. Let matrices
B1B1B1 and B2B2B2 be created by columns of these bases. The matrix C1C1C1, which consists of A1, A2
and A4, is not a matrix of a base, because A4 = A1 + A2. Similarly the matrix C2C2C2, which
consists of A1, A3 and A5, is not a matrix of the base, because A3 = A5 + A1.

BBB1 =


2 1 2
3 1 2
1 0 1

 , BBB2 =


1 4 3
1 5 4
0 2 1

 ,

CCC1 =


2 1 3
3 1 4
1 0 1

 , CCC2 =


2 4 2
3 5 2
1 2 1

 .
√

Example 2.13. Find all bases of the matrix AAA.

AAA =
 2 3 4 −1

1 5 2 0


Solution:
Rows of the AAA are linearly independent, so, rank of this matrix is h(AAA) = 2. The number
of columns of AAA is 4. Thus, the maximum number of bases of AAA is

(
4
2

)
= 6. We create all

6 possible submatrices with size 2× 2 from columns of AAA.
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MMM1 =
 2 3

1 5

 , MMM2 =
 2 4

1 2

 , MMM3 =
 2 −1

1 0

 ,
MMM4 =

 3 4
5 2

 , MMM5 =
 3 −1

5 0

 , MMM6 =
 4 −1

2 0

 .
Columns ofMMM2, which is created by columns A1 and A3, are linearly independent (one is a
multiple of another), therefore this matrix cannot be a base matrix of AAA. In all other cases,
the columns are linearly independent and the matrices are base matrices of the matrix AAA:

B1 = {A1, A2}, B2 = {A1, A4}, B3 = {A2, A3}, B4 = {A2, A4}, B5 = {A3, A4}.
√

Example 2.14. Calculate the coordinates of the column A4 in the base B3 from the
example 2.13.
Solution:
The base B3 is created by columns A2, A3. According to the remark 2.4, we write:

A4 = x14 · A2 + x24 · A3.

We obtain the following system by substituting of particular elements of columns:

−1 = 3x14 + 4x24

0 = 5x14 + 2x24

We solve system and we obtain coordinates of the column A4 in the base B3: xxxB3 =
(

1
7 ,−

5
14

)
√

Example 2.15. Find all basis solutions of the system 2 3 4 −1
1 5 2 0

 · xxx =
 4

2

 .
Solution:
We denote the matrix on the left side of the system as AAA. It is the same matrix as in the
example 2.13 and therefore there exist five different bases of AAA

B1 = {A1, A2}, B2 = {A1, A4}, B3 = {A2, A3}, B4 = {A2, A4}, B5 = {A3, A4}.

We denote the matrix (column) on the right side of the system by bbb. We calculate a solution
of BBBk · xxx = bbb for every base Bk, k ∈ {1, 2, 3, 4, 5}. According to the defiinition 2.13, we
write all basis solutions xxxBk

.
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B1 = {A1, A2};
 2 3

1 5

 · xxx =
 4

2

 ; xxxB1 = (2, 0, 0, 0)>

B2 = {A1, A4};
 2 −1

1 0

 · xxx =
 4

2

 ; xxxB2 = (2, 0, 0, 0)>

B3 = {A2, A3};
 3 4

5 2

 · xxx =
 4

2

 ; xxxB3 = (0, 0, 1, 0)>

B4 = {A2, A4};
 3 −1

5 0

 · xxx =
 4

2

 ; xxxB4 =
(

0, 2
5 , 0,−

14
5

)>

B5 = {A3, A4};
 4 −1

2 0

 · xxx =
 4

2

 ; xxxB5 = (0, 0, 1, 0)>

√

Example 2.16. Determine which of the solutions in the example 2.15 are feasible and
which are degenerated.
Solution:
Basis feasible solutions: xxxB1 , xxxB2 , xxxB3 and xxxB5 .
Degenerated solutions are the same xxxB1 , xxxB2 , xxxB3 and xxxB5 .

√
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2.8 Exercises
Design a mathematical model for the verbally formulated linear programming problems
2.1– 2.9.

2.1. We have 30 bar pieces each with the length of 12 meters. We need to cut 15 bar pieces
with the length of 5 meters, 40 bar pieces with the length of 4 meters and 35 bar pieces
with the length of 3 meters. Suggest a optimal solution by minimizing the scrap.

2.2. There is a cutting machine available for a cutting line which is able to cut standardized
bales with the width of 2 meters. From these standardized bales we have to cut the required
amount of bales with following widths: 862 pc by 112 cm, 341 pc by 77 cm and 216 pc
by 35 cm. Let us assume that we have sufficient number of the standardized bales and we
cut only the required widths (of course scrap will be caused by this). Suggest the setting
of the cutting tools in the cutting machine (and also their presetting) so that the scrap
would be minimized.

2.3. You have 12 000 $ to invest, and three different funds from which you can choose. The
municipal bond fund (MBF) has a 7% return, the local bank’s CDs have an 8% return,
and the high-risk account has an expected (hoped-for) 12% return. To minimize risk, you
decide not to invest more than 2, 000 $ in the high-risk account. For tax reasons, you
need to invest at least three times as much in the municipal bonds as in the bank CDs.
Assuming the year-end yields are as expected, what are optimal investment amounts?

2.4. At a certain refinery, the refining process requires the production of at least three
gallons of gasoline for each gallon of fuel oil. To meet the anticipated demands of winter,
at least three million gallons of fuel oil a day will need to be produced. The demand for
gasoline, on the other hand, is not more than 6.4 million gallons a day. If gasoline is selling
for $ 4.50 per gallon and fuel oil sells for $ 5.90/gal, how much of each should be produced
in order to maximize revenue?

2.5. A farmer has 10 acres to plant in wheat and rye. He has to plant at least 7 acres.
However, he has only $ 1 200 to invest and each acre of wheat costs $ 200 to plant and
each acre of rye costs $ 100 to plant. Moreover, the farmer has to get the planting done
in 12 hours and it takes an hour to plant an acre of wheat and 2 hours to plant an acre of
rye. If the profit is $ 500 per acre of wheat and $ 300 per acre of rye how many acres of
each should be planted to maximize profits?

2.6. A gold processor has two sources of gold ore, source A and source B. In order to keep
his plant running, at least three tons of ore must be processed each day. Ore from source
A costs $ 1 000 per ton to process, and ore from source B costs $ 2 000 per ton to process.
Costs must be at most $ 8 000 per day. Moreover, Federal Regulations require that the
amount of ore from source B cannot exceed twice the amount of ore from source A. If ore
from source A yields 2 oz. of gold per ton, and ore from source B yields 3 oz. of gold per
ton, how many tons of ore from both sources must be processed each day to maximize the
amount of gold extracted subject to the above constraints?
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2.7. A chain of hypermarkets has its central stores in BA, LM and KE. These central stores
dispose of the amounts 40, 20 and 40 units of the same item. The individual hypermarkets
need these amounts of this item: TN – 25, ZA – 20, BB – 30, PP – 25. Transport costs of
1 unit of this item from central stores into hypermarkets are listed in the following table.
Design a supply with this item in order to minimize the transport costs.

TN ZA BB PP
KE 55 60 50 40
BA 35 30 45 60
LM 40 30 35 30

2.8. A carpenter makes tables and chairs and he wants to have a maximal profit. Each
table can be sold for a profit of £30 and each chair for a profit of £10. The carpenter
can afford to spend up to 40 hours per week working and takes six hours to make a table
and three hours to make a chair. Customer demand requires that he makes at least three
times as many chairs as tables. Tables take up four times as much storage space as chairs
and there is room for at most four tables each week. Formulate this problem as a linear
programming problem.
2.9. A calculator company produces a scientific calculator and a graphing calculator. Long-
term projections indicate an expected demand of at least 100 scientific and 80 graphing
calculators each day. Because of limitations on production capacity, no more than 200
scientific and 170 graphing calculators can be made daily. To satisfy a shipping contract,
a total of at least 200 calculators much be shipped each day. If each scientific calculator
sold results in a $ 2 loss, but each graphing calculator produces a $ 5 profit, how many of
each type should be made daily to maximize net profits?
2.10. Convert the following linear programming problems into canonical and standard
form.

a)
2x1 + x2 → max
4x1 − x2 ≤ 4
x1 + 2x2 ≥ 5

x1 ≤ 6
x1,2 ≥ 0

b)
2x1 − 3x2 → min
x1 + x2 = 15
x1 − x2 ≥ 7

3x1 + x2 ≤ 3
x1,2 ≥ 0
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c)

x1 − 4x2 + x3 → max
x1 + x2 + x3 = 10

2x1 + x2 + 3x3 ≤ 120
x1,2,3 ≥ 0

d)

4x1 − x2 + 3x3 → min
2x1 − 8x2 + 2x3 = 6
3x1 − 4x2 + 3x3 ≥ 4
7x1 + 5x2 + x3 ≥ −4

x1,2 ≥ 0

e)

−x1 − 2x2 − 3x3 → max
x1 − x2 + 4x3 ≤ 6
x1 + 2x2 − 3x3 ≥ 7

x1 − 2x3 = 3
x2,3 ≥ 0

f)

x1 − x2 + x3 − x4 → min
2x1 + 3x2 − x4 = 8

4x1 − 7x3 + 2x4 = 12
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2.9 Solutions
2.1

2x1 + x3 + x5 + 2x6 → min
x1 + x2 + x3 + x4 + x5 + x6 + x7 ≤ 30

2x1 + x2 + x3 ≥ 15
x2 + 3x4 + 2x5 + x6 ≥ 35

x2 + 2x3 + x5 + 2x6 + 4x7 ≥ 40
x1,...,7 ≥ 0

2.2
11x1 + 18x2 + 11x3 + 18x4 + 25x5 → min

x1 + x2 ≥ 862
x1 + 2x3 + x4 ≥ 341

2x2 + x3 + 3x4 + 5x5 ≥ 216
x1,...,5 ≥ 0

2.3
0, 07x1 + 0, 08x2 + 0, 12x3 → max

x1 + x2 + x3 = 12000
x3 ≤ 2000

x1 − 3x2 ≥ 0
x1,2,3 ≥ 0

2.4
4, 5x1 + 5, 9x2 → max

x1 − 3x2 ≥ 0
x1 ≥ 3

0 ≤ x2 ≤ 6, 4

2.5
500x1 + 300x2 → max

x1 + x2 ≤ 10
x1 + x2 ≥ 7

200x1 + 100x2 ≤ 1200
x1 + 2x2 ≤ 12

x1,2 ≥ 0
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2.6

60x1 + 90x2 → max
x1 + x2 ≥ 3

2000x1 + 1000x2 ≤ 8000
2x1 − x2 ≥ 0

x1,2 ≥ 0

2.7

55x11 + 60x12 + 50x13 + 40x14 + 35x21 + 30x22 + 45x23 + 60x24+
+40x31 + 30x32 + 35x33 + 30x34 → min

x11 + x12 + x13 + x14 = 40
x21 + x22 + x23 + x24 = 40
x31 + x32 + x33 + x34 = 20

x11 + x21 + x31 = 25
x12 + x22 + x32 = 20
x13 + x23 + x33 = 30
x14 + x24 + x34 = 25

x11,12,...,34 ≥ 0

2.8

30x1 + 10x2 → max
6x1 + 3x2 ≤ 40
3x1 − x2 ≤ 0
4x1 + x2 ≤ 16

x1,2 ≥ 0

2.9

−2x1 + 5x2 → max
100 ≤ x1 ≤ 200
80 ≤ x2 ≤ 170
x1 + x2 ≥ 200

x1,2 ≥ 0
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2.10
canonical form standard form

a)
−2x1 − x2 → min
−4x1 + x2 ≥ −4
x1 + 2x2 ≥ 5
−x1 ≥ −6
x1,2 ≥ 0

−2x1 − x2 → min
4x1 − x2 + s1 = 4
x1 + 2x2 − s2 = 5

x1 + s3 = 6
x1,2 ≥ 0
s1,2,3 ≥ 0

b)
2x1 − 3x2 → min
−x1 − x2 ≥ −15
x1 + x2 ≥ 15
x1 − x2 ≥ 7

−3x1 − x2 ≥ −3
x1,2 ≥ 0

2x1 − 3x2 → min
x1 + x2 = 15

x1 − x2 − s1 = 7
3x1 + x2 + s2 = 3

x1,2 ≥ 0
s1,2 ≥ 0

c)

−x1 + 4x2 − x3 → min
−x1 − x2 − x3 ≥ −10
x1 + x2 + x3 ≥ 10

−2x1 − x2 − 3x3 ≥ −120
x1,2,3 ≥ 0

−x1 + 4x2 − x3 → min
x1 + x2 + x3 = 10

2x1 + x2 + 3x3 + s1 = 120
x1,2,3 ≥ 0
s1 ≥ 0

d)

4x1 − x2 + 3x+
3 − 3x−3 → min

−2x1 + 8x2 − 2x+
3 + 2x−3 ≥ −6

2x1 − 8x2 + 2x+
3 − 2x−3 ≥ 6

3x1 − 4x2 + 3x+
3 − 3x−3 ≥ 4

7x1 + 5x2 + x+
3 − x−3 ≥ −4

x1,2, x
+
3 , x

−
3 ≥ 0

4x1 − x2 + 3x+
3 − 3x−3 → min

2x1 − 8x2 + 2x+
3 − 2x−3 = 6

3x1 − 4x2 + 3x+
3 − 3x−3 − s1 = 4

7x1 + 5x2 + x+
3 − x−3 − s2 = −4
x1,2, x

+
3 , x

−
3 ≥ 0

s1,2 ≥ 0
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e)

x+
1 − x−1 + 2x2 + 3x3 → min
−x+

1 + x−1 + x2 − 4x3 ≥ −6
x+

1 − x−1 + 2x2 − 3x3 ≥ 7
−x+

1 + x−1 + 2x3 ≥ 3
x+

1 − x−1 − 2x3 ≥ 3
x+

1 , x
−
1 , x2,3 ≥ 0

x+
1 − x−1 + 2x2 + 3x3 → min

x+
1 − x−1 − x2 + 4x3 + s1 = 6

x+
1 − x−1 + 2x2 − 3x3 − s2 = 7

x+
1 − x−1 − 2x3 = 3
x+

1 , x
−
1 , x2,3 ≥ 0
s1,2 ≥ 0

f)
x+

1 − x−1 − x+
2 + x−2 + x+

3 − x−3 − x+
4 + x−4 → min

−2x+
1 + 2x−1 − 3x+

2 + 3x−2 + x+
4 − x−4 ≥ −8

2x+
1 − 2x−1 + 3x+

2 − 3x−2 − x+
4 + x−4 ≥ 8

−4x+
1 + 4x−1 + 7x+

3 − 7x−3 − 2x+
4 + 2x−4 ≥ −12

4x+
1 − 4x−1 − 7x+

3 + 7x−3 + 2x+
4 − 2x−4 ≥ 12

x+
1 , x

−
1 , x

+
2 , x

−
2 , x

+
3 , x

−
3 , x

+
4 , x

−
4 ≥ 0

x+
1 − x−1 − x+

2 + x−2 + x+
3 − x−3 − x+

4 + x−4 → min
2x+

1 − 2x−1 + 3x+
2 − 3x−2 − x+

4 + x−4 = 8
4x+

1 − 4x−1 − 7x+
3 + 7x−3 + 2x+

4 − 2x−4 = 12
x+

1 , x
−
1 , x

+
2 , x

−
2 , x

+
3 , x

−
3 , x

+
4 , x

−
4 ≥ 0





Chapter 3

Linear Programming Duality

3.1 The Dual to Linear Programming Problem
Consider the following LP with n variables and m constraints:

ccc> · xxx→ min
aiaiai · xxx = bi, for i = 1, . . . , k − 1
aiaiai · xxx ≥ bi, for i = k, . . . ,m

xj ≥ 0 for j ∈ N1

xj is unbounded for j ∈ N2.

(3.1)

We could transform LPP to this form very easily by using basic transformations (2.7) –
(2.11).

Definition 3.1. Consider the following LP in the form (3.1). The linear programming
problem given by the following way is called a dual LPP (D) of original LPP. (3.1).

yyy> · bbb→ max
yi is unbounded for i = 1, . . . , k − 1
yi ≥ 0 for i = k, . . . ,m

yyy> · Aj ≤ cj for j ∈ N1

yyy> · Aj = cj for j ∈ N2.

(3.2)

The original LPP is called the primal problem (P ).
If the primal LPP is in the canonical form, then pair primal - dual is given as:

ccc> · xxx→ min
AAA · xxx ≥ bbb

xxx ≥ 0

yyy> · bbb→ max
yyy> ·AAA ≤ ccc

yyy ≥ 0

57
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If the primal LPP is in the standard form, then pair primal - dual is given by:

ccc> · xxx→ min
AAA · xxx = bbb

xxx ≥ 0

yyy> · bbb→ max
yyy> ·AAA ≤ ccc

yi is unbounded for i = 1, . . . ,m.

Theorem 3.1. Dual of a dual is primal.
Some basic rules for constructing of a dual.

1. if P is maximum (minimum) problem, then D is minimum (maximum) problem,

2. one variable in D belongs to one constraint in P ,

3. one constraint in D belongs to one variable in P ,

4. coefficients of the objective function of P give corresponding right side in D,

5. elements of the right side in P give coefficients of the objective function in D,

6. the constraint matrix of D is transpose of the constraint matrix of P .

We clearly summarize these rules and signs of equality and inequality in primal-dual
pair in the Table 3.1.

See examples 3.1 and 3.2.

3.2 Primal-Dual Solutions
Theorem 3.2 (The weak duality theorem). For any feasible solution xxx in P (3.1) and
feasible solution yyy in D (3.2) we have:

ccc> · xxx ≥ yyy> · bbb.

Corollary 3.1. If xxx is feasible solution for P (3.1), yyy is feasible solution for D (3.2) such
that:

ccc> · xxx = yyy> · bbb,

then both xxx,yyy are optimal for their respective LPP.

Corollary 3.2. If the feasible set of dual FD (3.2) isn’t empty and its objective function
is uper unbounded on FD, then the primal LPP (3.1) is infeasible.

Corollary 3.3. If the feasible set of primal FP (3.1) isn’t empty and its objective function
is lower unbounded on FP , then the dual LPP (3.2) is infeasible.
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Table 3.1: Relations between primal (P) and dual (D) task of LPP.

Primal LPP (P ) ⇐⇒ Dual LPP (D)
ccc> · xxx→ min ⇐⇒ yyy> · bbb→ max
ccc> · xxx→ max ⇐⇒ yyy> · bbb→ min
aiaiai · xxx ≥ bi (min) ⇐⇒ yi ≥ 0 (max)
aiaiai · xxx ≥ bi (max) ⇐⇒ yi ≤ 0 (min)
aiaiai · xxx ≤ bi (min) ⇐⇒ yi ≤ 0 (max)
aiaiai · xxx ≤ bi (max) ⇐⇒ yi ≥ 0 (min)

aiaiai · xxx = bi ⇐⇒ yi ∈ (−∞,∞)
xj ≥ 0 (max) ⇐⇒ yyy> · Aj ≥ cj (min)
xj ≤ 0 (max) ⇐⇒ yyy> · Aj ≤ cj (min)
xj ≥ 0 (min) ⇐⇒ yyy> · Aj ≤ cj (max)
xj ≤ 0 (min) ⇐⇒ yyy> · Aj ≥ cj (max)
xj ∈ (−∞,∞) ⇐⇒ yyy> · Aj = cj

Theorem 3.3 (The strong duality theorem).

(1) If either P or D has an optimal solution, then so does the other, the optimal values
of objective functions are equal, and there exists optimal solutions for both P and
D.

(2) If either P or D is feasible but unbounded, then the other is unfeasible.

Overview of the different options for solving a pair P – D:

Table 3.2: Overview of the different options for solving a pair P – D.

primal dual
has optimum feasible unbounded infeasible

has optimum
√

– –
feasible unbounded – –

√

infeasible –
√ √



CHAPTER 3. LINEAR PROGRAMMING DUALITY 60

Theorem 3.4 (The complementary slackness theorem). Let xxx and yyy be feasible solution
for P and D respectively. Then xxx and yyy are optimal solutions if, and only if:

yi(aiaiai · xxx− bi) = 0 for i = 1, . . . ,m,

and
(cj − yyy> · Aj)xj = 0 for j = 1, . . . , n.

See examples 3.3 and 3.4.

3.3 Solved Examples
Example 3.1. Find the dual to the following primal LPP:

x1 +x2 −3x3 +x4 → min
3x1 −2x2 −x3 ≤ 4

x2 +x3 +4x4 ≤ 2
x1 +3x3 ≥ 3

x1−4 ≥ 0

Solution:
Clearly, the dual is a maximum problem, because of minimum primal. The primal contains
4 variables (x1, x2, x3, x4) and 3 constraints, therefore the dual contains 4 constraints and
3 variables (y1, y2, y3). Using rules 1. - 6. we could write what we have determined so far:

4y1 +2y2 +3y3 → max
3y1 +y3 1
−2y1 +y2 1
−y1 +y2 +3y3 −3

4y2 1

We determine signs of equality and inequality with respect to the above table. So we have
a complete mathematical model of the desired dual LPP:

4y1 +2y2 +3y3 → max
3y1 +y3 ≤ 1
−2y1 +y2 ≤ 1
−y1 +y2 +3y3 ≤ −3

4y2 ≤ 1
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y1, y2 ≤ 0; y3 ≥ 0.
√

Example 3.2. Find the dual to the following primal LPP:

2x1 −x2 +4x3 → max
x1 +3x2 −2x3 ≥ 0

2x1 +2x2 +4x3 ≤ 6
x1 −x2 −x3 = −8

x1 ≥ 0.

Solution:
Similarly as in the previous example 3.1, we write the coefficients of the objective function
of P as right side coefficients of D, elements of right side of P as coefficients of the objective
function of D a constraint matrix of D will be transpose of the constraint matrix of P :

6y2 −8y3 → min
y1 +2y2 +y3 2

3y1 +2y2 −y3 −1
−2y1 +4y2 −y3 4

According to known rules listed in Table, we determine signs of equality and inequality in
constraints:

6y2 −8y3 → min
y1 +2y2 +y3 ≥ 2

3y1 +2y2 −y3 = −1
−2y1 +4y2 −y3 = 4

y1 ≤ 0
y2 ≥ 0
y3 ∈ (−∞,∞).

√

Example 3.3. Find the optimal solution of the given LPP:

30x1 + 48x2 + 12x3 → min
3x1 + 4x2 − 2x3 = 1
5x1 + 3x2 + 3x3 ≥ −2

x1, x3 ≥ 0
x2 ≤ 0
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Solution:
The dual problem of this problem has two variables and three constraints. We can solve
LPP with two variables graphically. So, first we write the dual problem of the given LPP:

y1 − 2y2 → max
3y1 + 5y2 ≤ 30
4y1 + 3y2 ≥ 48
−2y1 + 3y2 ≤ 12

y2 ≥ 0

We represent constraints as half-planes in R2, see figure 3.1. When we add the nonnega-

Figure 3.1: Constraints for dual LPP.

tivity condition for the variable y2, we get the empty set of feasible solutions. Since the
dual LPP is unfeasible, according to Theorem 3.3 we know that the primal LPP doesn’t
have the optimal solution.

√
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Example 3.4. Find the optimal solution of the given LPP. Use a similar procedure as in
the example 3.3:

3x1 − x2 + 2x3 + x4 → min
x1 + x2 + x3 + x4 ≥ −1
x1 − x2 + x3 − x4 ≥ 3

x1−4 ≥ 0

Solution:
Similarly as in example 3.3, we have the primal with 4 variables and 3 constraints, there-
fore the dual contains 4 constraints and 3 variables and we know to solve it graphically.
Mathematical model of dual is:

−y1 + 3y2 → max
y1 + y2 ≤ 3
y1 − y2 ≤ −1
y1 + y2 ≤ 2
y1 − y2 ≤ 1
y1, y2 ≥ 0

We draw the feasible set and the counter line of the objective function of dual graphically.
See figure 3.2

max

Figure 3.2: The graphic solution of the dual.

We obtain the optimal solution by moving of the counter line in the maximization direction:
yyyopt = (0, 2)>, f opt

D (yyy) = 6. By the strong duality theorem, the value of the primal objective
function is f opt

P (xxx) = f opt
D (yyy) = 6.

We use the complementary slackness theorem to find the optimal solution of the primal.
First, we substitute the yyyopt into all constraints of dual and we find out which inequality
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is acquired as a sharp inequality:

0 + 2 ≤ 3 2 < 3
0− 2 ≤ −1 −2 < −1
0 + 2 ≤ 2 2 ≤ 2
0− 2 ≤ 1 −2 < 1

According to the complementary slackness theorem we know: (cj −yyy> ·Aj)xj = 0. For the
constrain to acquire sharp, it is (cj − yyy> · Aj) 6= 0, hence xj = 0 and x1 = x2 = x4 = 0.
Now we apply the second part of the complementary slackness theorem: yi(aiaiai ·xxx− bi) = 0.
We know, that y2 6= 0, consequently, the second constraint of primal should be acquired
as equality. Thus we substitute into this constraint x1 = x2 = x4 = 0 and we compute x3.

0− 0 + x3 − 0 = 3
x3 = 3

The optimal solution of primal is xxxopt = (0, 0, 3, 0)>.
√
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3.4 Exercises
3.1. Find the dual to the following primal LPP::

4x1 − x2 + 2x3 → max
−2x1 + 3x2 + x3 ≥ 1
4x1 + 2x2 + 2x3 ≤ 6
−x1 − x2 + x3 = 8

x1 ≥ 0

3.2. Find the dual to the following primal LPP and convert it into standard form:

−3x1 + 4x2 + 2x3 − x4 → min
4x1 − x2 + 2x3 − x4 ≥ 1

−2x1 + x2 + 2x3 + 4x4 = 7
−x1 − x2 + x3 ≤ 8

x1,4 ≥ 0

3.3. Let us have a primal LPP:

12x1 + 8x2 → min
2x1 + x2 ≥ 4

2x1 + 3x2 ≥ 8
x1 + 6x2 ≥ 6

x1,2 ≥ 0

According to the complementary slackness theorem, find the optimal solution of the given
primal, if we know the solution of its dual yyyopt = (5, 1, 0)>.

3.4. Let us have a primal LPP:

x1 − x2 → max
x1 + 3x2 ≥ 9
x1 + 2x2 ≤ 14
−x1 + 2x2 ≤ 3

x1 ≤ 6

According to the complementary slackness theorem, find the optimal solution of the dual,
if we know the solution of the given primal xxxopt = (6; 1)>.
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3.5. Let us have a primal LPP:

2x1 − x2 → max
−3x1 + x2 ≤ 9

5x1 − x2 ≤ 6
3x1 − x2 ≥ 1
2x1 + x2 ≤ 3

x1,2 ≥ 0

According to the complementary slackness theorem, find the optimal solution of the given
primal, if we know the solution of its dual yyyopt = (0, 2/5, 0, 0)>.

3.6. Let us have a primal LPP:

11x1 + 108x2 − 45x3 − 10x4 → max
x1 + 26x2 + 2x3 − 2x4 ≤ 9
4x1 + 15x2 − 9x3 + x4 ≤ 5

x1,2,3,4 ≥ 0

Solve the dual graphically and use it to determine the solution of the given primal (with
using the complementary slackness theorem).

3.7. Let us have a primal LPP:

x1 + 6x2 + 5x3 → min
−x1 − 2x2 + x3 ≥ 1
x1 − 3x2 + 10x3 ≤ −2

x1,2,3 ≥ 0

Solve the dual graphically and use this solution to determine the solution of the given
primal.

3.8. Let us have a primal LPP:

2x1 − 3x2 + 4x3 → max
x1 + x2 − 2x3 ≤ 5

2x1 − 3x2 + x3 ≤ 10
x1,2,3 ≥ 0

Solve the dual graphically and use it to determine the solution of the given problem.
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3.5 Solutions
3.1

y1 + 6y2 + 8y3 → min
−2y1 + 4y2 − y3 ≥ 4

3y1 + 2y2 − y3 = −1
y1 + 2y2 + y3 = 2
y1 ≤ 0; y2 ≥ 0

3.2

−y1 − 7y+
2 + 7y−2 + 8y3 → min

4y1 − 2y+
2 + 2y−2 + y3 + s1 = −3
−y1 + y+

2 − y−2 + y3 = 4
2y1 + +2y+

2 − 2y−2 − y3 = 2
−y1 + 4y+

2 − 4y−2 + s2 = −1
y1, y

+
2 , y

−
2 , y3, s1, s2 ≥ 0

3.3 xxxopt = (1; 2)>, f(xxx)opt = 28

3.4 yyyopt = (−1/3; 0; 0; 4/3)>, f(yyy)opt = 5

3.5 xxxopt = (6/5; 0)>, f(xxx)opt = 12/5

3.6 yyyopt = (9/8; 21/4)>, xxxopt = (0; 91/264; 5/264; 0)>, f(xxx)opt = 291/8

3.7 The dual is feasible unbounded, so the given primal is unfeasible.

3.8 yyyopt = (2− 2t; t)>, for t ∈ 〈0, 1〉 (line segment); xxxopt = (5; 0; 0)>, f(xxx)opt = 10





Chapter 4

Simplex Method

4.1 Simplex Method – Algorithm
Simplex method is an algorithm how we can find an optimal solution of a linear program-
ming problem if it exists. The simplex method is a deterministic algorithm to find out
whether any base exists at all and find at least one basis feasible solution. The simplex
method systematically scans the basis feasible solutions such that the algorithm:

(1) never returns to a basis feasible solution already visited,

(2) finds out that the linear programming problem is unbounded,

(3) finds an optimal solution of LPP.

Let LPP be in standard form and x0 be the basis feasible solution corresponding to
base B = {AB(i); i = 1, 2, . . . ,m}. We determine the number:

θ = min
i=1,...,m

{
xi0

xij

; where xij > 0
}
. (4.1)

Suppose that the minimum was achieved in row r such that B(r) = k. We obtain new
base BN = B ∪ {j} − {k}, where

BN(i) =

 B(i) for i 6= r

j for i = r
(4.2)

and new basis feasible solution xN
i0:

xN
i0 =

 xi0 − θ · xij for i 6= r

θ for i = r
. (4.3)

Transition between basis feasible solutions is called pivoting, the element xrj is the
pivot, the column Aj enters the base in position r and column AB(r) = Ak leaves base.

69
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Simplex Table:

Denote:
z0 =

m∑
i=1

xi0 · cB(i), (4.4)

zj =
m∑

i=1
xij · cB(i), (4.5)

for each j = 1, 2, . . . , n. Number z0 is the value of the objective function in basis feasible
solution x0 and cR

j is called a relative price of column Aj and it holds that cR
j = cj − zj.

Table 4.1: Simplex Method – Simplex Table

B x0 x1 x2 x3 x4 x5 x6

— −z0 cR
1 cR

2 cR
3 cR

4 cR
5 cR

6

A1 x10 1 0 0 0 a14 a15

A2 x20 0 1 0 0 a24 a25

A3 x30 0 0 1 0 a34 a35

A4 x40 0 0 0 1 a44 a45

Theorem 4.1 (Change in objective function value). If a pivoting step is performed in
basis feasible solution x0 such that column Aj enters base, change in the objective function
value is θ · cR

j = θ · (cj − zj).
Theorem 4.2. If there exists a column j with negative relative price cR

j = cj − zj < 0,
then on its entering the base the objective function value decreases by θ · cR

j = θ · (cj−zj).
Theorem 4.3 (Optimality criterion). If vector cccR = ccc − zzz is nonnegative, then basis
feasible solution x0 is optimal.
Theorem 4.4 (Criterion of unboundedness). If there exists column j with cR

j < 0 such
that for each i : xij 5 0, then the LPP is unbounded.
Remark 4.1. Let B is a square matrix corresponding to base B. We can express the basis
feasible solution x0 for base B as:

xxx0 = B−1 · bbb, (4.6)
and the coefficients of the j-th column for the given matrix A and base B as:

xxxj = B−1 · Aj. (4.7)
We can write:

z0 = ccc>B · xxx0 = ccc>B ·B−1 · bbb (4.8)
zj = ccc>B · xxxj = ccc>B ·B−1 · Aj, zzz = ccc>B ·B−1 · A. (4.9)
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4.2 Two-Phase Algorithm of Simplex Method
As we can see in the previous section, the simplex method can be use for the linear
programming problem in standard form, which the simplex table is primarily feasible (i. e.
in the zero column are non-negative values) and the matrix limitation AAA contains m-
dimensional unit sub-matrix, which forms a normal base.

If the matrix AAA does not contain identity sub-matrix, we use a two-phase algorithm of
the simplex method, where the first phase is called the artificial LP (the auxiliary tasks).
Let LPP be given in standard form. (2.5):

f(xxx) =
n∑

j=1
(cj · xj)→ min

n∑
j=1

(aij · xj) = bi, for i = 1, . . . ,m

xj ≥ 0, for j = 1, 2, . . . , n.
First phase: It consists of solving an artificial task:

ϕ =
m∑

i=1
pi → min

n∑
j=1

(aij · xj + pi) = bi, for i = 1, . . . ,m

xj ≥ 0, for j = 1, 2, . . . , n
pi ≥ 0, for i = 1, 2, . . . ,m.

Remark 4.2. It is sufficient to add artificial variables pi only to those constraints, where
basis vectors lack.

Theorem 4.5. Artificial LPP has always an optimum.

Theorem 4.6. If the optimal solution of artificial LP is ϕopt 6= 0 then the original LP is
infeasible i. e. it has no feasible solution.
Second phase: If ϕopt = 0 is true in the optimal solution of the LPP, so there are two
possibilities:

1. There is no base i. e. in the optimal base remains an artificial variable:

– find a positive number in the row corresponding with artificial variable, mark it
as a pivot, and we recalculate the table with respect to the pivot.

– if it is not possible to find a pivot in the row containing artificial variable then
rows are linearly dependent. Row containing artificial variables will be left out.

– enter the original objective function into in the row of the relative price coeffi-
cients and to continue by the 2nd step.
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2. There is a base i. e. the optimal base has no artificial variable:

– we have a basic feasible solution of the original LPP. Replace the artificial ob-
jective function by the original objective function in the row of the relative price
coefficients.

– leave out artificial columns and continue with the simplex method further.

4.3 Procedure Simplex
Suppose that Tk is the simplex table in the k-th iteration of the simplex algorithm.

begin
T := Tk

optimum := false
unbounded := false
while (optimum = false and unbounded = false) do

if (cccR = 0) then optimum := true
else choose any j such that cR

j > 0
if (xxxj 5 0) then unbounded := true

else find θ = min
i=1,...,m

{
xi0
xij

; where xij > 0
}

= xr0
xrj

pivot is xrj

pivoting the simplex table T with respect to
the pivot xrj

create a simplex table T new after pivoting
end if

end if
end while
Tk+1 := T new

end
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4.4 Solved Examples
Example 4.1. Using the simplex method solve the following task:

15x1 + 10x2 → max
2x1 + 4x2 ≤ 12
4x1 + 2x2 ≤ 16

2x1 + 2 ≥ 2x2

2x2 ≤ 4
x1, x2 ≥ 0

Solution:
We rewrite the given problem of LP to the standard form in order to fill the simplex table.

−15x1 − 10x2 → min
2x1 + 4x2 + s1 = 12
4x1 + 2x2 + s2 = 16
−2x1 + 2x2 + s3 = 2

2x2 + s4 = 4
x1−2, s1−4 ≥ 0

LPP in the standard form has four constraints and six variables. We fill the simplex
table with 6 rows and 8 columns.

Table 4.2: Simplex method – Initial table

B x0 x1 x2 s1 s2 s3 s4

— 0 −15 −10 0 0 0 0

s1 12 2 4 1 0 0 0
s2 16 4 2 0 1 0 0
s3 2 −2 2 0 0 1 0
s4 4 0 2 0 0 0 1

Columns s1, s2, s3 and s4 (slack variables) are the basis columns and we can see them
as a unit submatrix of the type 4 × 4 in the table. The zero column consists of right
sides, which must be non-negative, because the simplex table must be primarily feasible.
Zero row corresponds to the relative prices, while relative prices must be zero in the basis
columns. If the simplex table satisfies all these conditions, then this table is prepared to
run the simplex algorithm.
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According to the algorithm, we need to find a pivot. We must look for the columns
with a negative relative price in the zero row. There are columns x1 and x2 in the Table
4.2. We select the column x2 and we will calculate all ratios of values in the zero column
and in the column x2 for all positive values which are in the column x2. We choose the
minimum of them, i. e. min{12

4 ,
16
2 ,

2
2 ,

4
2} = 1. It is the value in the third row. Value x32 is

the pivot, it means that the column s3 leaves the base and the column x2 enters into the
base. We recalculate Table 4.2 by the given pivot x32 and we obtain a new Simplex table
see Table 4.3.

Table 4.3: Simplex method – First iteration

B x0 x1 x2 s1 s2 s3 s4

— 10 −25 0 0 0 5 0

s1 8 6 0 1 0 −2 0
s2 14 6 0 0 1 −1 0
x2 1 −1 1 0 0 1

2 0
s4 2 2 0 0 0 −1 1

We got a table in which the first column has the negative relative price. It means
that the table is not optimal yet, and we determine a new pivot in this column. After
calculating minimum we find that an element x42 is the pivot. We are pivoting the table
and we get a new Table 4.4:

Table 4.4: Simplex method – Second iteration

B x0 x1 x2 s1 s2 s3 s4

— 35 0 0 0 0 −15
2

25
2

s1 2 0 0 1 0 1 −3
s2 8 0 0 0 1 2 −3
x2 2 0 1 0 0 0 1

2

x1 1 1 0 0 0 −1
2

1
2

We have negative relative price (in the fifth column) in this table again. By ratio
criterion we find a minimum in the fifth column and we determine the pivot (element x15).
We use pivot operation and we get the Table 4.5:
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Table 4.5: Simplex method – Third iteration

B x0 x1 x2 s1 s2 s3 s4

— 50 0 0 15
2 0 0 −10

s3 2 0 0 1 0 1 −3
s2 4 0 0 −2 1 0 3
x2 2 0 1 0 0 0 1

2

x1 2 1 0 1
2 0 0 −1

We check zero row in the Table 4.5 and we can see that there is the negative relative
price in the sixth column. We determine the pivot (this is an element x26). After the
pivoting we are getting the Table 4.6:

Table 4.6: Simplex method – Optimal table

B x0 x1 x2 s1 s2 s3 s4

— 190
3 0 0 5

6
10
3 0 0

s3 6 0 0 −1 1 1 0
s4

4
3 0 0 −2

3
1
3 0 1

x2
4
3 0 1 1

3 −1
6 0 0

x1
10
3 1 0 −1

6
1
3 0 0

In this new table there is not a negative relative price in the zero row, so it is the
optimal simplex table (see Table 4.6) and we can write the optimal solution of our problem
as: xxxopt = (10

3 ,
4
3)>. The value of the objective function is f opt = −190

3 . The optimal value
of the original objective function is f opt = 190

3 .
√

Example 4.2. Using the simplex method solve the following task:

x1 + 2x2 − x3 − 2x4 + x5 − x6 → min
x1 + x2 − x3 + x4 + x5 = 4
x1 − x2 + 2x3 − x4 + x6 = 3

x1−6 = 0

Solution:
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Table 4.7: Simplex method – The filled simplex table

B x0 x1 x2 x3 x4 x5 x6

— 0 1 2 −1 −2 1 −1

x5 4 1 1 −1 1 1 0
x6 3 1 −1 2 −1 0 1

The LPP is in a standard form, there are 2 constraints and 6 variables. We can fill the
simplex table with 4 rows and 8 columns.

The identity submatrix is composed of columns x5 and x6, but the relative prices of
these columns are not zero. Therefore, we must first modify the simplex table such that
there were zero relative prices. Then the simplex table will be ready to run an algorithm
that finds an optimal solution, if any, see Table 4.8.

Table 4.8: Simplex method – Initial table

B x0 x1 x2 x3 x4 x5 x6

— −1 1 0 2 −4 0 0

x5 4 1 1 −1 1 1 0
x6 3 1 −1 2 −1 0 1

We have only one negative relative price (−4) in the zero row and in this column we
look for the pivot. There is only one positive number 1, it is the pivot. We recalculate the
table with respect to that pivot and we get a new simplex table.

Table 4.9: Simplex method – First iteration

B x0 x1 x2 x3 x4 x5 x6

— 15 5 4 −2 0 4 0

x4 4 1 1 −1 1 1 0
x6 7 2 0 1 0 1 1

The next pivot can be found in column x3 and again there is the only one positive
number in this column, it is 1. We recalculate the table with respect to that pivot and we
get a new simplex table, see Table 4.10.
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Table 4.10: Simplex method – Optimal simplex table

B x0 x1 x2 x3 x4 x5 x6

— 29 9 4 0 0 6 2

x4 11 3 1 0 1 2 1
x3 7 2 0 1 0 1 1

This simplex table is optimal, because in the zero row there are not negative relative
prices. The optimal solution of our problem is xxxopt = (0, 0, 7, 11, 0, 0)> and the value of
the objective function is f opt = −29.

√

Example 4.3. Using the simplex method solve the following task:

x1 − x2 + x3 − 3x4 + x5 − x6 − 3x7 → min
3x3 + x5 + x6 = 6
x2 + 2x3 − x4 = 10
−x1 + x6 = 0

x3 + x6 + x7 = 6
x1−7 ≥ 0

Solution:
Our LPP is in standard form with 4 constraints and 7 variables. The simplex table has 6
rows and 9 columns, see Table 4.11.

Table 4.11: Simplex method – Filled in the simplex table

B x0 x1 x2 x3 x4 x5 x6 x7

— 0 1 −1 1 −3 1 −1 −3

6 0 0 3 0 1 1 0
10 0 1 2 −1 0 0 0
0 −1 0 0 0 0 1 0
6 0 0 1 0 0 1 1

This table does not include the identity submatrix, therefore it is unable to run the
simplex algorithm. The column x1 could replace the missing column of identity submatrix,
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Table 4.12: Simplex method – Modified table

B x0 x1 x2 x3 x4 x5 x6 x7

— 0 1 −1 1 −3 1 −1 −3

x5 6 0 0 3 0 1 1 0
x2 10 0 1 2 −1 0 0 0
x1 0 1 0 0 0 0 −1 0
x7 6 0 0 1 0 0 1 1

but the third position is −1, instead of 1. It can be modify by multiplying the third row
by (−1), while the simplex table will remain primarily feasible.

After this modification we already have an identity submatrix in the simplex table,
which consists of columns x5, x2, x1 and x7, but the relative prices of these columns are
not zero. We modify the table so that there were zero relative prices, see Table 4.13.

Table 4.13: Simplex method – Initial table

B x0 x1 x2 x3 x4 x5 x6 x7

— 22 0 0 3 −4 0 2 0

x5 6 0 0 3 0 1 1 0
x2 10 0 1 2 −1 0 0 0
x1 0 1 0 0 0 0 −1 0
x7 6 0 0 1 0 0 1 1

In the zero row is only one negative relative price. In column x4 with negative relative
price we can not find pivot, because all values in this column are non positive. There-
fore simplex algorithm ends and the outcome is that the task LP is indeed feasible, but
unbounded.

√

Example 4.4. Using the simplex method solve the following task:

−2x1 − x2 + x3 → max
x1 − x2 + x3 = 2

−2x1 + x2 + x3 = 4
x1−3 ≥ 0
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Solution:
We have to rewrite LPP in a standard form.

2x1 + x2 − x3 → min
x1 − x2 + x3 = 2

−2x1 + x2 + x3 = 4
x1−3 ≥ 0

The LPP is in the standard form with 2 constraints and 3 variables. We fill in the simplex
table, which has 4 rows and 5 columns, see Table 4.14.

Table 4.14: Simplex method – Filled in the simplex table

B x0 x1 x2 x3

— 0 2 1 −1

2 1 −1 1
4 −2 1 1

There is not an identity submatrix in this simplex table and we do not know how to get
it by any simple modification. Therefore, we must first solve the artificial task by which
we determine a basis columns. We need to add two artificial variables p1 and p2. Artificial
LPP has the form:

p1 + p2 → min
x1 − x2 + x3 + p1 = 2

−2x1 + x2 + x3 + p2 = 4
x1−3, p1−2 ≥ 0

The Simplex table of artificial LPP in the standard form, see Table 4.15.

Table 4.15: Simplex method – Artificial LPP

B x0 x1 x2 x3 p1 p2

— 0 0 0 0 1 1

p1 2 1 −1 1 1 0
p2 4 −2 1 1 0 1
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Table 4.16: Simplex method – Artificial LPP

B x0 x1 x2 x3 p1 p2

— −6 1 0 −2 0 0

p1 2 1 −1 1 1 0
p2 4 −2 1 1 0 1

This artificial LPP is solved by the same simplex algorithm as in Example 4.2. Firstly
we need to create a zero relative prices on the columns of identity submatrix.

The relative price is negative in the column x3. We calculate min{2
1 ; 4

1} = 2. The
variable p1 leaves the base and the variable x3 enters into the base. We use pivot operation
for the table and we get new table:

Table 4.17: Simplex method – Artificial LPP

B x0 x1 x2 x3 p1 p2

— −2 3 −2 0 2 0

x3 2 1 −1 1 1 0
p2 2 −3 2 0 −1 1

We are looking for the negative relative price in the zero row. The relative price is
negative in the column x2. In this column there is only one positive value, so it is clearly
the pivot. The variable p2 leaves from the base and x2 enters into the base. We can pivot
this table and we get a new simplex table, see Table 4.18.

Table 4.18: Simplex method – Artificial LPP

B x0 x1 x2 x3 p1 p2

— 0 0 0 0 1 1

x3 3 −1
2 0 1 1

2
1
2

x2 1 −3
2 1 0 −1

2
1
2

We got the optimal table. The artificial variables are not in the base and the value
of objective function is 0. Simultaneously we also have an identity submatrix of the table
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without the last two columns, which correspond to the artificial variables. It means that
we finished artificial task of LPP and we begin to solve our original task. We create a new
simplex table which does not contain the last two columns of artificial variables and zero
row will include the coefficients of the objective function in standard form.

Table 4.19: Simplex method – Second phase

B x0 x1 x2 x3

— 0 2 1 −1

x3 3 −1
2 0 1

x2 1 −3
2 1 0

Table 4.19 has an identity submatrix, which is composed of the columns x3 and x2. We
modify this simplex table so that we have a zero relative prices of these columns, see Table
4.20.

Table 4.20: Simplex method – Second phase – Initial step

B x0 x1 x2 x3

— 2 3 0 0

x3 3 −1
2 0 1

x2 1 −3
2 1 0

We have got the optimal Simplex table, because there are no negative relative prices in
the zero row. The optimal solution of our problem is xxxopt = (0, 1, 3)> and the value of the
objective function is f opt = −2.

√

Example 4.5. Using the simplex method solve the following task:
−x1 + 2x2 − 3x3 → max
−2x1 + x2 + 3x3 = 2
2x1 + 3x2 + 4x3 = 1

x1−3 ≥ 0
We write the standard form of given LPP.

x1 − 2x2 + 3x3 → min
−2x1 + x2 + 3x3 = 2
2x1 + 3x2 + 4x3 = 1

x1−3 ≥ 0
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The LPP is in the standard form with 2 constraints and 3 variables. We fill in the simplex
table, which has 4 rows and 5 columns, see Table 4.21.

Table 4.21: Simplex method – Initial table

B x0 x1 x2 x3

— 0 1 −2 3

2 −2 1 3
1 2 3 4

Similarly as in Example 4.5 in the simplex table there is not an identity submatrix.
First we create artificial task which determines us a basis columns. In our case, we add
two artificial variable p1 and p2. Artificial task of LPP has the form:

p1 + p2 → min
−2x1 + x2 + 3x3 + p1 = 2
2x1 + 3x2 + 4x3 + p2 = 1

x1−3, p1, p2 ≥ 0

The simplex table is in the form:

Table 4.22: Simplex method – Artificial task

B x0 x1 x2 x3 p1 p2

— 0 0 0 0 1 1

p1 2 −2 1 3 1 0
p2 1 2 3 4 0 1

This artificial task is solved by the same simplex algorithm as in the previous example.
First, we need to create a zero relative prices over the identity submatrix:

In the zero row, we have two negative relative prices. We select a column x3 and
determine the pivot. We calculate min{2

3 ,
1
4} =

1
4 .
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Table 4.23: Simplex method – Artificial task

B x0 x1 x2 x3 p1 p2

— −3 0 −4 −7 0 0

p1 2 −2 1 3 1 0
p2 1 2 3 4 0 1

Table 4.24: Simplex method – Artificial task

B x0 x1 x2 x3 p1 p2

— −5
4

7
2

5
4 0 0 7

4

p1
5
4 −7

2 −5
4 0 1 −3

4

x3
1
4

1
2

3
4 1 0 1

4

We got the optimal table of the artificial task in which one artificial variable is not in
the base, but the second artificial variable p1 remained in the base i. e. xxxart = (0, 0, 5

4 , 0)T

and the value of the objective function is f art = −5
4 6= 0. This means that the original

LPP have not a basis feasible solution, i. e given LPP is infeasible.
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4.5 Exercises
4.1. Using the simplex method, find solutions of following linear programming problems:

a)

−x1 + x2 + x3 + 2x4 → max
x1 + 10x3 − 4x4 = 25
x2 + 2x3 + 3x4 = 26

x1,2,3,4 ≥ 0

b)

−x1 + 3x2 → max
2x1 + x2 ≥ 6
x1 + 2x2 ≥ 6

4x1 − x2 + x3 = 15
x1,2,3 ≥ 0

c)

x1 + 2x2 → max
10x1 − 4x2 ≤ 25
−2x1 + 3x2 ≤ 6

x1,2 ≥ 0

d)

7x1 − 42x2 → min
3x1 + 5x2 ≤ 15
x1 + x2 ≥ 6

x1,2 ≥ 0

e)

−3x1 − x2 + x3 + 2x4 → min
2x1 − x3 − x4 = 0

x1 + x2 = 10
x1 + 3x3 = 4
x1,2,3,4 ≥ 0
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f)

3x1 + 2x2 + 4x3 → max
x1 + x2 + 2x3 ≤ 4

2x1 + x3 ≤ 5
2x1 + x2 + 3x3 ≤ 7

x1,2,3 ≥ 0

g)

2x1 + 3x2 + 3x3 → max
3x1 + 2x2 + x4 = 60
x1 − x2 − 4x3 ≥ −10

2x1 − 2x2 + 5x3 ≤ 50
x1,2,3,4 ≥ 0

h)

x1 − 2x2 − 3x3 − x4 → max
x1 − x2 − 2x3 − x4 ≤ 4

2x1 + x3 − 4x4 ≤ 2
−2x1 + x2 + x4 ≤ 1

x1,2,3,4 ≥ 0

4.2. Solve the linear programming problem which is given in the example 2.3.

4.3. Solve the linear programming problem which is given in the example 2.4.

4.4. Solve the linear programming problem which is given in the example 2.5.

4.5. Solve the linear programming problem which is given in the example 2.6.

4.6. Solve the linear programming problem which is given in the example 2.8.

4.7. Solve the linear programming problem which is given in the example 2.9.
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4.6 Solutions
4.1 a) xxxopt = (0; 21; 5/2; 0)>, f(xxx)opt = 47/2

b) The LPP is faesible but unbounded.
c) xxxopt = (9/2; 5)>, f(xxx)opt = 29/2
d) The LPP is unfeasible.
e) xxxopt = (4/7; 66/7; 8/7; 0)>, f(xxx)opt = −10
f) xxxopt = (5/2; 3/2; 0)>, f(xxx)opt = 21/2
g) xxxopt = (8; 18; 0; 0)>, f(xxx)opt = 70
h) xxxopt = (7; 0; 0; 3)>, f(xxx)opt = 4

4.2 MBF: $ 7500; CD: $ 2500; H-RF: $ 2000. Profit is $ 965 per year.

4.3 This LPP hasn’t any feasible solution.

4.4 The farmer reaches the biggest profit $ 3200 if: 4 hectares for wheat; 4 hectares for
rye.

4.5 Source A: 2 tons; source B: 4 tons. The biggest daily yield of gold is 16 oz.

4.6 Carpenter’s plan: 4/3 tables, 32/3 chairs. The biggest profit is £440/3.

4.7 The company reaches the biggest daily profit $ 650 if it produces 100 scientific cal-
culators and 170 graphing calculators daily.



Chapter 5

Dual Simplex Method

5.1 Dual Simplex Method – Algorithm
The dual algorithm of the simplex method is used to solve the primary tasks of the linear
programming problem. However, while the primary simplex algorithm must have the
primary feasible table, the dual algorithm we use, if the table is not primarily feasible (the
primary algorithm cannot be used), but the table is dual feasible. The dual algorithm is
compared with the primary algorithm like the primary a little bit modified. The coefficients
ccc of the objective function and the right sides bbb have an inverse role. There, we also move
from one basis feasible solution to another, but we try to maintain the dual feasibility. The
pivot is choosen by another way:

– Choose the pivot in the i-th row, where the value xi0 < 0.

– For all xij < 0 calculate x0j

xij
in the i-th row and we determine the λ.

λ = x0k

xik

= max
{
x0j

xij

; for j such that xij < 0
}
.

– Thus determined xik is a pivot and the table is pivoted by the same way as in the
primary simplex algorithm.

We describe in the table 5.1 on the page 88 how to determining the pivot in the primary
and the dual simplex method algorithm.

87
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Table 5.1: Determining the pivot in the primary and the dual simplex method algorithm.

Primary algorithm of the SM Dual algorithm of the SM

choose j-th column to the base choose i-th row out of the base
so that x0j < 0 so that xi0 < 0

calculate xi0
xij

, ∀xij > 0 in j-th column calculate x0j

xij
, ∀xij < 0 in i-th row

xk0
xkj

= min
{

xi0
xij

; for i such that xij > 0
}

x0k

xik
= max

{
x0j

xij
; for j such that xij < 0

}
pivot is the element xkj (must be positive) pivot is the element xik (must be negative)

if in the each column, where x0j < 0, if in the each column, where xi0 < 0,
is each xij ≤ 0, then LPP is unbounded is each xij ≥ 0, then LPP is unfeasible

5.2 Procedure Dual Simplex
Suppose that Tk is the simplex table in the k-th iteration of the simplex algorithm.

begin
T := Tk

optimum := false
unbounded := false
while (optimum = false and unbounded = false) do

if (xxxi0 = 0) then optimum := true
else choose any i such that xi0 < 0

if (∀j xij = 0) then unbounded := true
else find

λ = x0k

xik
= max

{
x0j

xij
; for j such that xij < 0

}
pivot is xik

pivoting the simplex table T with respect to
the pivot xik

create a simplex table T new after pivoting
end if

end if
end while
Tk+1 := T new

end
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5.3 Solved Examples
Example 5.1. Solve the following problem using the simplex method:

3x1 + 2x2 + 3x3 → min
x1 − x2 − x3 ≥ 2
x1 + x2 + x3 ≥ 4
x1 − 2x2 + x3 ≥ 1

x1−3 ≥ 0

Solution:
The LPP is converted into a standard form.

3x1 + 2x2 + 3x3 → min
x1 − x2 − x3 − s1 = 2
x1 + x2 + x3 − s2 = 4
x1 − 2x2 + x3 − s3 = 1

x1−3, s1−3 ≥ 0

The LPP in standard form has three constrains and six variables. We are fill the simplex
table with five rows and eight columns.

Table 5.2: Dual simplex method – First step.

B x0 x1 x2 x3 s1 s2 s3

— 0 3 2 3 0 0 0

2 1 −1 −1 −1 0 0
4 1 1 1 0 −1 0
1 1 −2 1 0 0 −1

In this table we do not have the unit submatrix. We can multiply each row by the number
(−1) and we receive the unit submatrix, but the simplex table would be primarily infeasible.
See Table 5.3
This table is dual feasible. We use the Dual Simplex Method. We choose a negative value
in the zero row. If we find the pivot in this row, then the variable corresponding to the
choosen row goes out of the base and variable in which column we found the pivot goes
to the base. We choose the last row and we have to determine the pivot in this row. We
calculate max{ 3

−1 ; 3
−1} = −3. Let us choose a pivot in the first column x1. We pivotal

the table with respect to the specified pivot and we get a new Simplex table, which is still
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Table 5.3: Dual simplex method – Second step.

B x0 x1 x2 x3 s1 s2 s3

— 0 3 2 3 0 0 0

s1 −2 −1 1 1 1 0 0
s2 −4 −1 −1 −1 0 1 0
s3 −1 −1 2 −1 0 0 1

Table 5.4: Dual simplex method – Third step.

B x0 x1 x2 x3 s1 s2 s3

— −3 0 8 0 0 0 3

s1 −1 0 −1 2 1 0 −1
s2 −3 0 −4 0 0 1 −1
x1 1 1 −2 1 0 0 −1

primarily unfeasible, but the dual feasible - Table 5.4. We again select the pivot under the
dual simplex method.
We find a negative value in the zero column and in this row we determine the pivot. Let
it be the second row, in which we determine the pivot. We calculate max{ 8

−4 ; 3
−1} = −2.

The element x2 enter to the base and s2 goes out from the base. We recalculate the table
with respect to the specified pivot, see Table 5.5.

Table 5.5: Dual simplex method – Fourth step.

B x0 x1 x2 x3 s1 s2 s3

— −9 0 0 0 0 2 1

s1 −1
4 0 0 2 1 −1

4 −3
4

x2
3
4 0 1 0 0 −1

4
1
4

x1
5
2 1 0 1 0 −1

2 −1
2

We have only one negative value in the zero column. We determine the pivot in the first
row. Calculate max{ 2

− 1
4
, 1
− 3

4
} = −4

3 . The variable s3 goes to the base and variable s1 goes
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out from the base.

Table 5.6: Dual simplex method – Fifth step.

B x0 x1 x2 x3 s1 s2 s3

— −28
3 0 0 8

3
4
3

5
3 0

s1
1
3 0 0 −8

3 −4
3

1
3 1

x2
2
3 0 1 2

3
1
3 −1

3 0
x1

8
3 1 0 −1

3 −2
3 −1

3 0

We obtained an optimal Table 5.6 with an optimal solution of LPP: xxxopt = (8
3 ,

2
3 , 0)> and

the value of the objective function is f opt = 28
3 .

√
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5.4 Exercises
5.1. Using the dual simplex method, find solutions of the following linear programming
problems:

a)

6x1 + 4x2 + 7x3 → min
x1 + 3x3 ≥ 5

3x1 + x2 + x3 ≥ 2
−x1 + x2 ≥ 1

x1,2,3 ≥ 0

b)

−x1 − 2x2 − x3 → max
−2x1 + 3x3 ≥ −1

2x1 − x2 + x3 ≥ 1
3x1 + 2x2 − x3 ≥ 0

x1,2,3 ≥ 0

5.2. In order to ensure optimal health, a lab technician needs to feed rabbits a daily diet
containing a minimum of 24 g of fat, 36 g of carbohydrates, and 4 g of protein. But the
rabbits should be fed no more than five ounces of food a day. Rather than order rabbit
food that is custom-blended, it is cheaper to order Food X and Food Y, and blend them
for an optimal mix. Food X contains 8 g of fat, 12 g of carbohydrates, and 2 g of protein
per ounce, and costs 0, 20 $ per ounce. Food Y contains 12 g of fat, 12 g of carbohydrates,
and 1 g of protein per ounce, at a cost of 0, 30 $ per ounce.

a) What is the optimal blend?

b) Solve this problem, if food X contains 8 g of fat, 6 g of carbohydrates, and 2 g of
protein per ounce.
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5.5 Solutions
5.1 a) xxxopt = (0; 1; 5/3)>, f(xxx)opt = 47/3

b) xxxopt = (1/2; 0; 0)>, f(xxx)opt = −1/2

5.2 a) 3 ounces of X, 0 ounces of Y
b) 2/3 ounces of X, 8/3 ounces of Y





Chapter 6

Integer Linear Programing Problem

6.1 Formulation of the Integer Linear Programing Prob-
lem

Definition 6.1 (ILP Problem). The linear programming problem is called the integer
linear programming problem if it is in the following form:

f(xxx) = ccc> · xxx→ min (max)

m∑
i=1

aiaiai · xxx


≤
=
≥

bbb (6.1)

xj ≤≥ 0; xj ∈ Z; j = 1, 2, . . . , n , where
coefficients of the objective function, coefficients of the right hand sides and elements of
the matrix of constrains are integers.

Remark 6.1. The matrix notation of ILPP with n variables and m constrains in the
standard form is as follows:

f(xxx) = ccc> · xxx→ min
AAA · xxx = bbb

xi ≥ 0; xj ∈ Z; for j = 1, 2, . . . , n,
AAA ∈ Zm×n; ccc ∈ Zn; bbb ∈ Zm.

In general, it is sufficient to require only unknown vector xxx to be an integer. If not all
variables are required to be integer we called it as – mixed program.

Definition 6.2. If in the task of the integer linear programming problem (6.1) the con-
dition that variables (xxx ∈ Zn) are integer is omitted, we obtain the task of the linear
programming problem, which is called the relaxation of ILP (6.1).

95
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Remark 6.2. We denote:
– Feasible set of LPP as FLP P

– Feasible set of ILPP as FILP P

– Sets of optimal solutions of LPP as F opt
LP P

– Sets of optimal solutions of ILPP as F opt
ILP P

– Optimal values of objective functions of LPP as f opt
LP P

– Optimal values of objective functions of ILPP as f opt
ILP P

Theorem 6.1. [Relation between ILPP and its relaxation – 1] The following holds: FILP P ⊆
FLP P .
Theorem 6.2 (Relation between ILPP and its relaxation – 2). If an optimal solution of
relaxation of ILPP (6.1) is an integer, then it is an optimal solution of ILP (6.1) too.
Theorem 6.3 (Relation between ILPP and its relaxation – 3). Let all the entries of the
matrix AAA and vector bbb be integer. If relaxation of ILP is unbonded and FILP P is nonempty,
then ILPP is unbounded too.
Theorem 6.4 (Relation between ILPP and its relaxation – 4). If the relaxation of ILPP
(6.1) is infeasible, then ILP (6.1) is infeasible too.

See example 6.10.

6.2 Integer Linear Programing Problem in R2

This subsection lists some examples of two-variable ILPs and their representatiosn in R2.
In the following examples you graphically draw the set of feasible solutions and the optimal
solution of the relaxations of ILPP, also the set of feasible solutions and the optimal solution
of ILPP.
Example 6.1. Sove the following ILPP:

x1 + 2x2 → max
10x1 + 7x2 ≤ 35
−2x1 + x2 ≤ 2

x1, x2 ≥ 0; x1, x2 ∈ Z.

Solution:
In the figure 6.1 we can see the set of feasible solutions (left figure) of the relaxation ILPP.
This relaxation has one optimal solution xxxopt

r = (7/8, 15/4)>, which is not integer solution.
The set of feasible solution of ILPP is shown on the right figure – it is the set of marked
points. There is one optimal solution of ILPP: xxxopt = (1, 3)>. √
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Figure 6.1: The graphical representation of the ILPP – example 6.1.

Example 6.2. Let we have ILPP:

x1 + x2 → max
10x1 + 7x2 ≤ 35
−2x1 + x2 ≤ 2

x1, x2 ≥ 0; x1, x2 ∈ Z.

Solution:
In the figure 6.2 we can see the set of feasible solutions (left figure) of the relaxation
ILPP. This relaxation has one optimal solution xxxopt

r = (7/8, 15/4)>, which is not an integer
solution. The set of feasible solutions of ILPP is shown on the right figure – it is the set of
marked points. We can see that the given ILPP has two optimal solutions: xxxopt

1 = (1, 3)>
and xxxopt

2 = (2, 2)>.

Figure 6.2: The graphical representation of the ILPP – example 6.2.
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√

Example 6.3. Let us have ILPP:

x1 + x2 → max
10x1 + 8x2 ≥ 41
3x1 + 2x2 ≤ 12
−x1 + 2x2 ≤ 2

x1, x2 ≥ 0; x1, x2 ∈ Z.

Solution:
In the figure 6.3 we can see the set of feasible solutions of the relaxation ILPP (left side
of the figure). This relaxation has more optimal solution xxxopt

r = (5/2, 9/4)>, but it is not
an integer solution. The set of feasible solutions of ILPP is shown on the right figure – it
is the empty set. This means that the ILPP is infeasible.

Figure 6.3: The graphical representation of the ILPP – example 6.3.

√

Example 6.4. Let us have ILPP:

x1 − x2 → max
7x1 + 2x2 ≥ 14
4x1 + 9x2 ≤ 45
x1 − x2 ≤ 3
x1, x2 ≥ 0; x1, x2 ∈ Z.

Solution:
The set of feasible solutions of relaxation of the given ILPP is drown on the right side of
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figure 6.4. This relaxation has more then one optimal solutions – an infinite number of
optimal solutions.The set of optimal solutions of relaxation is the line segment BC. The
set of feasible solutions of the given ILPP is drawing on the left side of figure 6.4. It has
more then one (three) optimal solutions xxxopt ∈ {(3, 0)>, (4, 1)>, (5, 2)>}.

Figure 6.4: The graphical representation of the ILPP – example 6.4.
√

Example 6.5. Next ILPP is given as:
−3x1 + x2 → min
7x1 + 2x2 ≥ 14
4x1 + 9x2 ≤ 45
6x1 − 2x2 ≤ 23

x1, x2 ≥ 0; x1, x2 ∈ Z.

Solution:
The set of feasible solutions of relaxation of the given ILPP is drawing on the right side of
figure 6.5. This relaxation has (as in the previous example) more than one optimal solution
– an infinite number of optimal solutions and the set of optimal solutions of relaxation is the
line segment BC. The set of feasible solutions of the given ILPP is drawing on the left side
of figure 6.5, But in this case the given ILPP has just one optimal solution xxxopt = (4, 1)>.√

Example 6.6. Let we have ILPP:
−6x1 + 5x2 → max
14x1 + 7x2 ≤ 49
8x1 − 11x2 ≤ 4
6x1 − 5x2 ≥ −3

x1, x2 ≥ 0; x1, x2 ∈ Z.
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Figure 6.5: The graphical representation of the ILPP – example 6.5.

Solution:
The set of feasible solutions of relaxation of the given ILPP is drawn on the right side of
the figure 6.6. This relaxation has (as in the two previous example) more then one optimal
solution – the set of optimal solutions of relaxation is the line segment FG. But we can see
on the left side of the figure 6.6 The feasible set of ILPP is empty and ILPP is infeasible.

Figure 6.6: The graphical representation of the ILPP – example 6.6.

√

In the two following examples we have a unbounded feasible sets of relaxations but
feasible sets of ILPP are of different types.
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Example 6.7. Let we have ILPP:

2x1 + x2 → max
x1 − 4x2 ≤ −3
−2x1 + x2 ≤ −1
−5x1 + 6x2 ≥ −9

x1, x2 ≥ 0; x1, x2 ∈ Z.

Solution:
The relaxation of the given ILPP is feasible and unbounded – see figure 6.7 – left side. The
ILPP is also feasible and unbounded – see figure 6.7 – right side.

√

max
max

Figure 6.7: The graphical representation of the ILPP – example 6.7.

Example 6.8. Let we have ILPP:

2x1 + 3x2 → max
3x1 − 3x2 ≥ −5
3x1 − 3x2 ≤ −4
x1 + x2 ≥ 3
x1, x2 ≥ 0; x1, x2 ∈ Z.

Solution:
The relaxation of the given ILPP is feasible and unbounded – see figure 6.8 – left side, but
the ILPP is infeasible – see figure 6.8 – right side.

√
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max max

Figure 6.8: The graphical representation of the ILPP – example 6.8.

Example 6.9. Let us have ILPP:

2x1 + 3x2 → min
4x1 + 5x2 ≤ 16
7x1 + 4x2 ≥ 42
−2x1 + 3x2 ≤ −4

x1, x2 ≥ 0; x1, x2 ∈ Z.

Solution:
As we can see in the figure 6.9 the relaxation of the given ILPP is infeasible. According to
the Theoreme 6.1 the ILPP is infeasible too.

√

Observation:
We might have noticed in the previous examples that a feasible set of relaxation of ILPP
could be infeasible, feasible bounded and feasible unbounded. A feasible bounded set could
have one or more than one optimal solutions. A feasible set of ILPP could be infeasible,
feasible bounded and feasible unbounded. A feasible bounded set could have one or more
than one optimal solutions. The next table clearly shows, which options are possible (

√
)

or are not possible (–) for the pair “relaxation of ILPP – ILPP”.
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max

Figure 6.9: The graphical representation of the ILPP – example 6.9.

6.3 Gomory’s Fractional Algorithm
We can solve tasks of the integer linear programming problem with two variables graph-
ically with some limitations. But what happens if ILPP has more than two decision
variables? In the subsection 4.1 is an example ??, which is solved by simplex method. The
relaxation of the ILP has an integer solution. This solution was also solution of ILP. If the
relaxation of ILP is not integer solution, we can solve it by method of the so-called cutting
hyperplane, otherwise also called Gomory’s fractional algorithm.

First, using the simplex method we solve the ILP relaxation. Gomory fractional algo-
rithm adds to the problems of linear programming constrains - Gomory cuts which narrow
down the set of feasible solutions of some parts do not containing the points with integer
values. For solving of the expanded task about such a cut is preferable to use the dual
simplex method.

Let task of the integer linear programming problem is given in the standard form:

f(xxx) = ccc> · xxx→ min
AAA · xxx = bbb

xi ≥ 0; xj ∈ Z; for j = 1, 2, . . . , n,
AAA ∈ Zm×n; ccc ∈ Zn; bbb ∈ Zm.

Let us have the optimal table for a relaxation of ILP. The elements of the optimal table
will be denoted γij.
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Table 6.1: Information about a relaxation of ILPP and ILPP.

relaxation ILPP
of ILPP 1 optimum more than feasible infeasible

1 optimum unbounded
1 optimum

√ √
–

√

more than 1 opt.
√ √

–
√

feasible unbounded – –
√ √

infeasible – – –
√

Corollary 6.1. After the addition of Gomory cut (6.2):

−
∑
j /∈B

{γij} · xj + g = −{γi0} (6.2)

to the optimal table (LPP) is not excluded any integer feasible point, but exclude the
currently optimal solution (LPP), where γi0 is not an integer. The new table is basic,
primary infeasible and optimal.

Theorem 6.5 (Finality Gomory algorithm). Gomory algorithm
(a) chooses the first row with non-integer yi0,
(b) use the lexicographic version of the dual algorithm.
If the objective function (LPP) is bounded from above, then the algorithm finds after the
final number of steps the integer solution (ILPP) or finds that (ILPP) is infeasible.
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6.4 Solved Examples
Example 6.10. We need to buy some filing cabinets. There are two types of them: S40
and Sk60. You know that Cabinet S40 costs 10 e per unit, requires 0,55 m2 of floor space,
and holds 0,22 m3 of files. Cabinet Sk60 costs 20 e per unit, requires 0,74 m2 of floor
space, and holds 0,56 m3 of files. The office has room for no more than 6,6 m2 of cabinets.
Our budget is 140 e . How many of which model should we buy, in order to maximize
storage volume?
Solution:
We denote number of S40 as x1 and number of Sk60 as x2:

0,22x1 + 0,56x2 → max
10x1 + 20x2 ≤ 140

0,55x1 + 0,74x2 ≤ 6,6
x1, x2 ≥ 0; x1, x2 ∈ Z.

We multiply the objective function and constraints by the appropriate number in order to
have integer coefficients:

11x1 + 28x2 → max
x1 + 2x2 ≤ 14

55x1 + 74x2 ≤ 660
x1, x2 ≥ 0; x1, x2 ∈ Z.

We obtain ILP. By omitting conditions x1, x2 ∈ Z, we have relaxation of the given ILP
and we transform it into standard form:

−11x1 − 28x2 → min
x1 + 2x2 + s1 = 14

55x1 + 74x2 + s2 = 660
x1, x2, s1, s2 ≥ 0.

This relaxation is solved with using simplex method:

B x0 x1 x2 s1 s2

— 0 −11 −28 0 0

s1 14 1 2 1 0
s2 660 55 74 0 1

The table is not optimal and we must use a pivot operation. The number 2 on the position
(1; 2) is the pivot:
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B x0 x1 x2 s1 s2

— 196 3 0 14 0

x2 7 1/2 1 1/2 0
s2 142 18 0 −37 1

The optimal solution of the relaxation of given ILP is xxxopt = (0, 7)>; f opt = −196 :
(−50) = 3, 92. Because the solution xxxopt = (0, 7) ∈ Z2 than this solution is solution of
givet ILP too. We should order 7 pieces of Cabinet Sk60 and we obtain 3, 92 m3 of storage
volume.

√

Example 6.11. Carpentry manufactures three types of tables. They use three different
kinds of wooden boards for their production. Consumption of these boards to produce one
table of various kinds, stocks boards and the selling profit of one table are given in the
following table:

tables\boards B1 B2 B3 profit (e)
T1 2 4 0 8
T2 1 0 1 10
T3 1 2 1 12

stocks 80 50 40

The task is to schedule production plan so that the profit will be maximum.
Solution:
The standard form of the mathematical model of the ILPP is as follows:

8x1 + 10x2 + 12x3 → max
2x1 + x2 + x3 + s1 = 80

4x1 + 2x3 + s2 = 50
x2 + x3 + s3 = 40

x1, x2, x3, s1, s2, s3 ≥ 0; x1, x2, x3 ∈ Z.

We can fill the simplex table of the relaxation of the ILPP.

B x0 x1 x2 x3 s1 s2 s3

— 0 −4 −5 -6 0 0 0

s1 80 2 1 1 1 0 0
s2 50 4 0 2 0 1 0
s3 40 0 1 1 0 0 1

The table is basis, primary feasible but it is not an optimal table. We must use the pivot
operation. We recalculate the last table by the given pivot x32 = 1 and we get a new
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simplex table.

B x0 x1 x2 x3 s1 s2 s3

— 200 −4 0 −1 0 0 5

s1 40 2 0 0 1 0 −1
s2 50 4 0 2 0 1 0
x2 40 0 1 1 0 0 1

We recalculate the table again but the given pivot is x23 = 2 and we get a new simplex table.

B x0 x1 x2 x3 s1 s2 s3

— 225 −2 0 0 0 1/2 5

s1 40 2 0 0 1 0 −1
x3 25 2 0 1 0 1/2 0
x2 15 -2 1 0 0 -1/2 1

Since neither this table is an optimal, we use pivot operation again and the pivot is x21 = 2.

B x0 x1 x2 x3 s1 s2 s3

— 250 0 0 1 0 1 5

s1 15 0 0 −1 1 −1/2 −1
x1 25/2 1 0 1/2 0 1/4 0
x2 40 0 1 1 0 0 1

This table is optimal and the solution of the relaxation is xopt
r = (25/2, 40, 0)>. As the

solution of relaxation is not an integer, it is not a solution ILPP. The value of variable x1
is not an integer we add Gomory cut according row of the simplex table which belongs to
x1:

{1} · x1 + {0} · x2 + {1/2} · x3 + {0} · s1 + {1/4} · s2 + {0} · s3 − g = {25/2}.

So we have:

−1/2 · x3 − 1/4 · s2 + g = −1/2.

We add one column and one row for g to table – for Gomory cut:
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B x0 x1 x2 x3 s1 s2 s3 g

— 250 0 0 1 0 1 5 0

s1 15 0 0 −1 1 −1/2 −1 0
x1 25/2 1 0 1/2 0 1/4 0 0
x2 40 0 1 1 0 0 1 0
g −1/2 0 0 −1/2 0 −1/4 0 1

The obtained simplex table is primary infeasible, but dual feasible and basis. We can use
dual simplex algorithm and pivot is x43 = −1/2.

B x0 x1 x2 x3 s1 s2 s3 g

— 249 0 0 0 0 1/2 5 2

s1 16 0 0 0 1 0 −1 −2
x1 12 1 0 0 0 0 0 1
x2 39 0 1 0 0 −1/2 1 2
x3 1 0 0 1 0 1/2 0 −2

One can see that table is optimal and solution is integer. So the solution of the ILPP is
xxxopt = (12, 39, 1)> a f opt = 249. Carpentry will have maximal profit if it manufactures 12
tables T1, 39 tables T2 and 1 table T3. The profil will be 249 e.

√
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6.5 Exercises
6.1. Find solutions of following integer linear programming problems:

a)

2x1 + 3x2 → max
3x1 + 2x2 ≤ 400

1, 5x1 + x2 ≤ 150
3x1 + 5x2 ≤ 300

x1,2 ≥ 0
x1,2 ∈ Z

b)

80x1 + 114y1 → max
x1 − 2x2 ≥ 0

0, 5x1 + x2 ≤ 19
x1 + 2x2 ≤ 40

2x1 + 5x2 ≤ 15
x1,2 ≥ 0
x1,2 ∈ Z

c)

x1 + x2 + x3 → max
−x2 + 2x3 ≤ 3

3x1 − 4x2 − x3 ≤ 5
x1,2,3 ≥ 0
x1,2,3 ∈ Z

d)

3x1 + 2x2 + 4x3 → max
x1 + x2 + 2x3 ≤ 4

2x1 + x3 ≤ 5
2x1 + x2 + 3x3 ≤ 7

x1,2,3 ≥ 0
x1,2,3 ∈ Z
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6.2. Factory produces laptops and computers. It uses 1 000 kg Cu, 7 000 kg Al, 1 000
kg steel for its production 1 000 pieces of computers. It is necessary to expend 3 000 kg
Cu, 1 000 kg Al, 1 000 kg Pb and 1 000 kg of steel in order to produce 1 000 pieces of
laptops. The factory has available 6 000 kg Cu, 35 000 kg Al, 3 000 kg Pb and 7 000 kg
steel. Maximize sales turnover when the computer price is 700 e and laptop price is 900
e per one piece.

6.3. We have 30 bar pieces each with the length of 10 meters. We need to cut 15 bar pieces
with the length of 5 meters, 36 bar pieces with the length of 3 meters and 20 bar pieces
with the length of 4 meters. Suggest an optimal solution by minimizing the scrap.
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6.6 Solutions
6.1 a) xxxopt = (40; 26)>, f opt = 158

b) xxxopt = (2; 1)>, f opt = 274
c) The relaxation of ILPP is feasible unbounded, so ILPP is feasible unbounded

or infeasible.
d) xxxopt = (2; 0; 1)>, f opt = 10

6.2 The factory will gain maximum sales turnover if it produces only 5 000 pieces of
computers. The sales turnover will be 3 500 000 e.

6.3 Optimal cutting of the bars: to cut 8 bars into 5+5 meters and 20 bars into 4+3+3
meters. The scrap will be zero.
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Lexicon – Vocabulary

English – Slovak

A
- Activity Analysis Problem - úloha o plánovaní výroby
- Additivity - aditivita
- Algorithm - algoritmus
- Artificial LPP - pomocná úloha LP
- Artificial Task - pomocná úloha
- Artificial Variables - pomocné premenné
- Assignment Problem - priraďovací problém
- Auxiliary Tasks - pomocná úloha LP

B
- Base of Vector Space - báza vektorového priestoru
- Base - báza
- Basic - bázický
- Basic Solution - bázické riešenie
- Basis - báza
- Basic Feasible Solution - bázické prípustné riešenie
- Bounded - ohraničený

C
- Canonical Form - kanonický tvar (úlohy LP)
- Change in objective function value - zmena hodnoty účelovej funkcie
- Coefficients of Constraints - koeficienty ohraničení
- Coefficients of Right Sides - koeficienty pravých strán
- Complementary Slackness Theorem - veta o komplementarite
- Constraints - obmedzenia
- Convex Analysis - konvexná analýza
- Convex Combination - konvexná kombinácia
- Convex Hull - konvexný obal
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- Convex Set - konvexná množina
- Corner Point - krajný bod
- Criterion of Unbondedness - kritérium neohraničenosti (v SM)
- Cutting Problem - rezný plán

D
- Decreasing Function - klesajúca funkcia
- Degenerated Solution - degenerované riešenie
- Diet Problem - úloha o diéte (zmiešavacia úloha)
- Dual LPP - duálna úloha LP
- Dual Problem - duálny problém
- Dual Simplex Method duálna simplexová metóda

E
- Element of Matrix - prvok matice

F
- Feasible - prípustný
- Feasible Solution - prípustné riešenie
- Feasible Vector - prípustný vektor
- Formulation of the Problem - formulácia problému

G
- Gaussian form of SLE - Gaussov tvar SLR
- General Form - všeobecný tvar
- Gomory’s Fractional Algorithm - Gomoryho zlomkový algoritmus
- Graphical Solution of ILP Problem - grafické riešenie úlohy CLP

H
- Half-closed Interval - polo-uzavretý interval
- Half-plane - polrovina

I
- Increasing Function - rastúca funkcia
- Identity Submatrix - jednotková podmatica
- Infeasible - neprípustný
- Integer - celé číslo
- Integer - celočíselný
- Integer Linear Programing Problem - úloha celočíselného programovania

J
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K
- -

L
- Line Segment - úsečka
- Linear Function - lineárna funkcia
- Linear Programming Problem - úloha lineárneho programovania
- Linearly Dependent - lineárne závislý
- Linearly Independent - lineárne nezávislý
- Linearly Independent Columns - lineárne nezávislé stĺpce
- Linearly Independent Rows - lineárne nezávislé riadky
- Local Maximum - lokálne maximum
- Local Minimum - lokálne minimum

M
- Main Theorem of LPP - hlavná veta LP
- Mathematical Model - matematický model
- Methods of Mathematical Programming- metódy matematického programovania
- Mathematical Programming Problem - úloha matematického programovania
- Maximum of Function - maximum funkcie
- Minimum of Function - minimum funkcie

N
- Natural Number - prirodzené číslo

O
- Objectives - ciele
- Objective Function - účelová funkcia
- Objective Function Coefficients - koeficienty účelovej funkcie
- Objective Function Value - hodnota účelovej funkcie
- Optimal Solution - optimálne riešenie
- Optimality Criterion - kritérium optimality (v SM)
- Original LPP - pôvodná úloha LP

P
- Pivot - pivot
- Pivoting - pivotovanie
- Pivoting Simplex Table - pivotovanie simplexovej tabuľky
- Plane - rovina
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- Problem - problém
- Proportionality - proporcionalita
- Polygon - mnohouholník
- Polyhedron - mnohosten
- Primal Problem - primárny problém
- Primal-Dual Pair - primárno-duálna dvojica

Q
- -

R
- Relaxation - relaxácia
- Relaxation of ILP Problem - relaxácia úlohy CLP
- Relative Price - relatívna cena

S
- Segment Line - úsečka
- Schedule Production Plan - výrobný program
- Set of Feasible Solutions - množina prípustných riešení
- Simplex Method - simplexová metóda
- Simplex Table - simplexová tabuľka
- Slack Variables - doplnkové premenné
- Solution - riešenie
- Standard Form - štandardný tvar (úlohy LP)
- Strong Duality Theorem - silná veta o dualite
- Submatrix - podmatica

T
- Task - úloha
- Transportation Problem - dopravná úloha
- Two-Phase Algorithm of SM - dvojfázový algoritmus pre SM

U
- Unbounded - neohraničený
- Unbounded LPP - neohraničená úloha LP

V
- Variables - premenné

W
- Weak Duality Theorem - slabá veta o dualite
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